Weiter zum Inhalt
Ökologischer Betrieb
Ökologischer Betrieb
Institut für

BW Betriebswirtschaft

Alle Publikationen von Stefan Erasmi

  1. 0

    Brög T, Don A, Scholten T, Erasmi S (2026) Reducing bias in cropland soil organic carbon and clay predictions using Sentinel-2 composites and data balancing. Remote Sens Environ 333:115109, DOI:10.1016/j.rse.2025.115109

    https://literatur.thuenen.de/digbib_extern/dn070359.pdf

  2. 1

    Steinhoff-Knopp B, Neuenfeldt S, Erasmi S, Saggau P (2025) (R)USLE C factor datasets for Germany [Datenpublikation]. 1 ZIP archive. Genève: Zenodo, DOI:10.5281/zenodo.13951344

  3. 2

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2025) Agricultural land use (raster) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2023) [Datenpublikation]. 1 ZIP archive; Version 201. Genève: Zenodo, DOI:10.5281/zenodo.15055561

  4. 3

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2025) Agricultural land use (raster) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2023) [Datenpublikation]. 1 ZIP archive; Version 202. Genève: Zenodo, DOI:10.5281/zenodo.15309479

  5. 4

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2025) Agricultural land use (raster) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2024) [Datenpublikation]. 1 ZIP archive; Version 201. Genève: Zenodo, DOI:10.5281/zenodo.16949898

  6. 5

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2025) Agricultural land use (raster) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2024) [Datenpublikation]. 1 ZIP archive; Version 201. Genève: Zenodo, DOI:10.5281/zenodo.17122420

  7. 6

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2025) Agricultural land use (raster) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2024) [Datenpublikation]. 1 ZIP archive; Version 202. Genève: Zenodo, DOI:10.5281/zenodo.17122646

  8. 7

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2025) Agricultural land use (raster): National-scale crop type maps for Germany from combined time series of Sentinel-2 and Landsat data (2024) [Datenpublikation]. 1 ZIP archive; Version 302. Genève: Zenodo, DOI:10.5281/zenodo.17197830

  9. 8

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2025) Agricultural land use (raster): National-scale crop type maps for Germany from combined time series of Sentinel-2 and Landsat data (2024) [Datenpublikation]. 1 ZIP archive; Version 301. Genève: Zenodo, DOI:10.5281/zenodo.17197761

  10. 9

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2025) Agricultural land use (raster): National-scale crop type maps for Germany from combined time series of Sentinel-2 and Landsat data (2024) [Datenpublikation]. 1 ZIP archive; Version 302. Genève: Zenodo, DOI:10.5281/zenodo.17190438

  11. 10

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2025) Agricultural land use (raster): National-scale crop type maps for Germany from combined time series of Sentinel-2 and Landsat data (2024) [Datenpublikation]. 1 ZIP archive; Version 301. Genève: Zenodo, DOI:10.5281/zenodo.17181387

  12. 11

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2025) Agricultural land use (raster): National-scale crop type maps for Germany from combined time series of Sentinel-2 and Landsat data (2024) [Datenpublikation]. 1 ZIP archive; Version 302. Genève: Zenodo, DOI:10.5281/zenodo.17182245

  13. 12

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2025) Agricultural land use (raster): National-scale crop type maps for Germany from combined time series of Sentinel-2 and Landsat data (2025) [Datenpublikation]. 1 ZIP archive; Version 301. Genève: Zenodo, DOI:10.5281/zenodo.17181503

  14. 13

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2025) Agricultural land use (raster): National-scale crop type maps for Germany from combined time series of Sentinel-2 and Landsat data (2025) [Datenpublikation]. 1 ZIP archive; Version 302. Genève: Zenodo, DOI:10.5281/zenodo.17182293

  15. 14

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2025) Agricultural land use (raster): National-scale crop type maps for Germany from combined time series of Sentinel-2 and Landsat data (2025) [Datenpublikation]. 1 ZIP archive; Version 302/2. Genève: Zenodo, DOI:10.5281/zenodo.17197871

  16. 15

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2025) Agricultural land use (raster): National-scale crop type maps for Germany from combined time series of Sentinel-2 and Landsat data (2025) [Datenpublikation]. 1 ZIP archive; Version 301. Genève: Zenodo, DOI:10.5281/zenodo.17197766

  17. 16

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2025) Agricultural land use (vector) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2023) [Datenpublikation]. 1 ZIP archive; Version 201. Genève: Zenodo, DOI:10.5281/zenodo.17135735

  18. 17

    Brög T, Don A, Scholten T, Erasmi S (2025) Bare soil composite for Germany (10 m) based on Sentinel-2 data from 2015 to 2024 [Datenpublikation]. Genève: Zenodo, DOI:10.5281/zenodo.15402687

  19. 18

    Lobert F, Schwieder M, Hostert P, Gocht A, Erasmi S (2025) Characterizing spatio-temporal patterns of winter cropland cover in Germany based on Landsat and Sentinel-2 time series. Int J Appl Earth Observ Geoinf 142:104728, DOI:10.1016/j.jag.2025.104728

    https://literatur.thuenen.de/digbib_extern/dn069891.pdf

  20. 19

    Erasmi S, Schwieder M, Gocht A, Muro J, Blickensdörfer L, Brög T, Lobert F, Tetteh GO, Fuß R, Don A (2025) Fernerkundung für eine Verbesserung der Klimaberichterstattung. In: RessortForschtKlima (ed) Ergebnisse aus drei Jahren Forschung für mehr Klimaschutz in Landwirtschaft, Wald und Ernährung : Abschlussbericht der RessortForschtKlima-Projekte. Göttingen: OpenAgrar, pp 84-87, DOI:10.3220/253-2025-220

    https://literatur.thuenen.de/digbib_extern/dn070589.pdf

  21. 20

    Schwieder M, Lobert F, Tetteh GO, Erasmi S (2025) Grassland mowing events across Germany detected from combined Sentinel-2 and Landsat time series for the year 2023 [Datenpublikation]. 1 ZIP archive; Version 1. Genève: Zenodo, DOI:10.5281/zenodo.16941138

  22. 21

    Schwieder M, Lobert F, Tetteh GO, Erasmi S (2025) Grassland mowing events across Germany detected from combined Sentinel-2 and Landsat time series for the year 2024 [Datenpublikation]. 1 ZIP archive; Version 1. Genève: Zenodo, DOI:10.5281/zenodo.16942505

  23. 22

    Muro J, Blickensdörfer L, Don A, Köber A, Asam S, Schwieder M, Erasmi S (2025) Hedgerow mapping with high resolution satellite imagery to support policy initiatives at national level. Remote Sens Environ 328:114870, DOI:10.1016/j.rse.2025.114870

    https://literatur.thuenen.de/digbib_extern/dn069821.pdf

  24. 23

    Brög T, Don A, Scholten T, Erasmi S (2025) High-resolution maps (10 m) of cropland soil organic carbon and clay in Germany based on Sentinel-2 data [Datenpublikation]. 3 PNG files, 6 TIFF files. Genève: Zenodo, DOI:10.5281/zenodo.15403341

  25. 24

    Levers C, Schwieder M, Dieker P, Erasmi S, Rodríguez RA, Bayr U, Calvo Obando AJ, Fjellstad W, Furubayashi S, Heliölä J, Herzog F, Hyvönen T, Ievina L, Lakovskis P, Meier E, Ojanen H, Pitkänen T, Tomas WM (2025) Implementing an OECD Farmland Habitat Biodiversity Indicator : lessons and guidelines from eight pilot studies. 49 p

  26. 25

    Brög T, Don A, Scholten T, Erasmi S (2025) Reducing bias in cropland soil organic carbon and clay predictions using Sentinel-2 composites and data balancing [Preprint]. EarthArXiv, 43 p, DOI:10.31223/X50M91

    https://literatur.thuenen.de/digbib_extern/dn069916.pdf

  27. 26

    Muro J, Blickensdörfer L, Köber A, Schwieder M, Don A, Erasmi S (2025) Spatially explicit distribution of hedgerows across German agricultural landscapes [Datenpublikation]. 1 TIFF file; Version 1. Genève: Zenodo, DOI:10.5281/zenodo.15654506

  28. 27

    Muro J, Blickensdörfer L, Köber A, Schwieder M, Don A, Erasmi S (2025) Spatially explicit distribution of hedgerows across German agricultural landscapes [Datenpublikation]. 1 TIFF file; Version 2. Genève: Zenodo, DOI:10.5281/zenodo.15782863

  29. 28

    Steinhoff-Knopp B, Neuenfeldt S, Erasmi S, Saggau P (2025) Spatiotemporal detailed crop cover and management factor maps as agri-environmental indicators for soil erosion in Germany. Int Soil Water Conserv Res 13(4):933-944, DOI:10.1016/j.iswcr.2025.06.002

    https://literatur.thuenen.de/digbib_extern/dn069854.pdf

  30. 29

    Montoya-Sanchez V, Schweiger AK, Schlund M, Paterno GB, Erasmi S, Kreft H, Hölscher D, Brambach F, Irawan B, Sundawati L, Zemp DC (2025) Spectral characterization of plant diversity in a biodiversity-enriched oil palm plantation. Remote Sensing Ecol Conserv: Online First, Sep 2025, DOI:10.1002/rse2.70034

    https://literatur.thuenen.de/digbib_extern/dn070164.pdf

  31. 30

    Lobert F, Schwieder M, Alsleben J, Brög T, Kowalski K, Okujeni A, Hostert P, Erasmi S (2025) Unveiling year-round cropland cover by soil-specific spectral unmixing of Landsat and Sentinel-2 time series. Remote Sens Environ 318:114594, DOI:10.1016/j.rse.2024.114594

    https://literatur.thuenen.de/digbib_extern/dn069411.pdf

  32. 31

    Tetteh GO, Schwieder M, Pham V-D, Blickensdörfer L, Gocht A, Neuenfeldt S, van der Linden S, Erasmi S (2024) Agrarflächennutzung aus dem All kartiert: Daten zur Quantifizierung von Klimaschutzmaßnahmen. In: Köchy M (ed) Agrarforschung zum Klimawandel: Konferenz der Deutschen Agrarforschungsallianz, 11.-14.03.2024, Potsdam, unter der Schirmherrschaft des Bundesministeriums für Ernährung und Landwirtschaft; Programm und Beiträge, Stand: 7. Mai 2024. Braunschweig: DAFA, p 61, DOI:10.3220/DAFA1713767287000

    https://literatur.thuenen.de/digbib_extern/dn068079.pdf

  33. 32

    Schwieder M, Tetteh GO, Blickensdörfer L, Gocht A, Erasmi S (2024) Agricultural land use (raster) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2017 to 2021) ; Version 201 [Datenpublikation] [online]. 5 TIFF files, 1 PDF file, 2 CLR files. Genève: Zenodo, zu finden in <https://zenodo.org/records/10617623> [zitiert am 07.03.2024], DOI:10.5281/zenodo.10617623

  34. 33

    Schwieder M, Tetteh GO, Blickensdörfer L, Gocht A, Erasmi S (2024) Agricultural land use (raster) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2017 to 2021) ; Version 202 [Datenpublikation] [online]. 5 TIFF files, 1 PDF file, 2 CLR files. Genève: Zenodo, zu finden in <https://zenodo.org/records/10640528> [zitiert am 03.12.2024], DOI:10.5281/zenodo.10640528

  35. 34

    Schwieder M, Tetteh GO, Blickensdörfer L, Gocht A, Erasmi S (2024) Agricultural land use (raster) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2022) ; Version v201 [Datenpublikation] [online]. 6 TIFF files, 1 PDF file, 2 CLR files. Genève: Zenodo, zu finden in <https://zenodo.org/records/10628809> [zitiert am 07.03.2024], DOI:10.5281/zenodo.10628809

  36. 35

    Schwieder M, Tetteh GO, Blickensdörfer L, Gocht A, Erasmi S (2024) Agricultural land use (raster) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2022) ; Version v202 [Datenpublikation] [online]. 1 TIFF file, 1 PDF file, 2 CLR files. Genève: Zenodo, zu finden in <https://zenodo.org/records/10645427> [zitiert am 07.03.2024], DOI:10.5281/zenodo.10645427

  37. 36

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2024) Agricultural land use (vector) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2017 to 2021) [Datenpublikation] [online]. 2 PDF files, 5 FGB files, 1 SLD file. Genève: Zenodo, zu finden in <https://zenodo.org/records/10619783> [zitiert am 07.03.2024], DOI:10.5281/zenodo.10619783

  38. 37

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2024) Agricultural land use (vector) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2022) [Datenpublikation] [online]. 1 FGB file, 1 PDF file, 1 SLD file. Genève: Zenodo, zu finden in <https://zenodo.org/records/10621629> [zitiert am 07.03.2024], DOI:10.5281/zenodo.10621629

  39. 38

    Wenzel A, Westphal C, Ballauff J, Berkelmann D, Brambach F, Buchori D, Camaretta N, Corre MD, Daniel R, Darras K, Erasmi S, Formaglio G, Hölscher D, Al-Amin Iddris N, Irawan B, Knohl A, Kotowska MM, Krashevska V, Kreft H, Mulyani Y, et al (2024) Balancing economic and ecological functions in smallholder and industrial oil palm plantations. PNAS 121(17):e2307220121, DOI:10.1073/pnas.2307220121

    https://literatur.thuenen.de/digbib_extern/dn068122.pdf

  40. 39

    Brög T, Don A, Wiesmeier M, Scholten T, Erasmi S (2024) Dataset and code for "Spatiotemporal monitoring of cropland soil organic carbon changes from space" [Datenpublikation] [online]. Genève: Zenodo, zu finden in <https://zenodo.org/records/14191435> [zitiert am 04.12.2024], DOI:10.5281/zenodo.14191435

  41. 40

    Paterno GB, Brambach F, Guerrero-Ramírez N, Zemp DC, Cantillo AF, Camarretta N, Moura CCM, Gailing O, Ballauff J, Polle A, Schlund M, Erasmi S, Iddris NA, Khokthong W, Sundawati L, Irawan B, Hölscher D, Kreft H (2024) Diverse and larger tree islands promote native tree diversity in oil palm landscapes. Science 386(6723):795-802, DOI:10.1126/science.ado1629

  42. 41

    Schwieder M, Lobert F, Tetteh GO, Erasmi S (2024) Grassland mowing events across Germany detected from combined Sentinel-2 and Landsat time series for the year 2022 [Datenpublikation] [online]. 1 TIFF file. Genève: Zenodo, zu finden in <https://zenodo.org/records/10610283> [zitiert am 07.03.2024], DOI:10.5281/zenodo.10610283

  43. 42

    Schwieder M, Lobert F, Tetteh GO, Erasmi S (2024) Grassland mowing events across Germany detected from combined Sentinel-2 and Landsat time series for the years 2017 - 2021 [Datenpublikation] [online]. 5 TIFF files. Genève: Zenodo, zu finden in <https://zenodo.org/records/10609590> [zitiert am 07.03.2024], DOI:10.5281/zenodo.10609590

  44. 43

    Saggau P, Brög T, Gocht A, Erasmi S, Steinhoff-Knopp B (2024) HotSpots der Bodenerosionsgefährdung durch Wasser in Deutschland. In: Köchy M (ed) Agrarforschung zum Klimawandel: Konferenz der Deutschen Agrarforschungsallianz, 11.-14.03.2024, Potsdam, unter der Schirmherrschaft des Bundesministeriums für Ernährung und Landwirtschaft; Programm und Beiträge, Stand: 7. Mai 2024. Braunschweig: DAFA, p 58, DOI:10.3220/DAFA1713767287000

    https://literatur.thuenen.de/digbib_extern/dn068077.pdf

  45. 44

    Erasmi S, Muro J, Brög T, Blickensdörfer L, Fuß R, Gocht A, Don A, Schwieder M (2024) KlimaFern - Fernerkundung für eine Verbesserung der Klimaberichterstattung. In: Köchy M (ed) Agrarforschung zum Klimawandel: Konferenz der Deutschen Agrarforschungsallianz, 11.-14.03.2024, Potsdam, unter der Schirmherrschaft des Bundesministeriums für Ernährung und Landwirtschaft; Programm und Beiträge, Stand: 7. Mai 2024. Braunschweig: DAFA, p 60, DOI:10.3220/DAFA1713767287000

    https://literatur.thuenen.de/digbib_extern/dn068078.pdf

  46. 45

    May PB, Schlund M, Armston J, Kotowska MM, Brambach F, Wenzel A, Erasmi S (2024) Mapping aboveground biomass in Indonesian lowland forests using GEDI and hierarchical models. Remote Sens Environ 313:114384, DOI:10.1016/j.rse.2024.114384

  47. 46

    Klein K, Ogan S, Tönshoff C, Böhner HGS, Dauber J, Erasmi S, Gocht A, Hellwig N, Klimek S, Krüger L, Lakemann L, Levers C, Lindermann L, Richter A, Röder N, Schwieder M, Sickel W, Sommerlandt FMJ, Stahl J, Tebbe CC, et al (2024) MonViA Indikatorenbericht 2024 : Bundesweites Monitoring der biologischen Vielfalt in Agrarlandschaften. Bonn: BLE, 199 p

    https://literatur.thuenen.de/digbib_extern/dn069418.pdf

  48. 47

    Follath T, Mickisch D, Hemmerling J, Erasmi S, Schwieder M, Demir B (2024) Multi-modal vision transformers for crop mapping from satellite image time series. In: IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium : Athens, Greece, 17-12 July 2024. IEEE, DOI:10.1109/IGARSS53475.2024.10641794

  49. 48

    Brög T, Don A, Wiesmeier M, Scholten T, Erasmi S (2024) Spatiotemporal monitoring of cropland soil organic carbon changes from space. Global Change Biol 30(12):e17608, DOI:10.1111/gcb.17608

    https://literatur.thuenen.de/digbib_extern/dn069232.pdf

  50. 49

    Pham V-D, Tetteh GO, Thiel F, Erasmi S, Schwieder M, Frantz D, van der Linden S (2024) Temporally transferable crop mapping with temporal encoding and deep learning augmentations. Int J Appl Earth Observ Geoinf 129:103867, DOI:10.1016/j.jag.2024.103867

    https://literatur.thuenen.de/digbib_extern/dn068235.pdf

  51. 50

    Brög T, Don A, Gocht A, Scholten T, Taghizadeh-Mehrjardi R, Erasmi S (2024) Using local ensemble models and Landsat bare soil composites for large-scale soil organic carbon maps in cropland. Geoderma 444:116850, DOI:10.1016/j.geoderma.2024.116850

    https://literatur.thuenen.de/digbib_extern/dn067810.pdf

  52. 51

    Lobert F, Löw J, Schwieder M, Gocht A, Schlund M, Hostert P, Erasmi S (2023) A deep learning approach for deriving winter wheat phenology from optical and SAR time series at field level. Remote Sens Environ 298:113800, DOI:10.1016/j.rse.2023.113800

    https://literatur.thuenen.de/digbib_extern/dn066907.pdf

  53. 52

    Schwieder M, Tetteh GO, Blickensdörfer L, Gocht A, Erasmi S (2023) Agricultural land use (raster) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2017 to 2021) [Datenpublikation] [online]. 5 TIFF-Dateien, 2 Textdateien. Braunschweig: Thünen-Atlas, zu finden in <https://www.openagrar.de/receive/openagrar_mods_00087489> [zitiert am 10.07.2023], DOI:10.3220/DATA20230707103051-0

  54. 53

    Schwieder M, Tetteh GO, Blickensdörfer L, Gocht A, Erasmi S (2023) Agricultural land use (vector) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2017 to 2021) [Datenpublikation] [online]. 5 Geopackages, 2 Textdateien. Braunschweig: Thünen-Atlas, zu finden in <https://www.openagrar.de/receive/openagrar_mods_00087490> [zitiert am 10.07.2023], DOI:10.3220/DATA20230707103117-0

  55. 54

    Erasmi S, Ackermann A, Bolte A, Dunger K, Elsasser P, Fuß R, Gocht A, Hoedt F, Klimek S, Neumeier S, Osterburg B, Röder N, Strer M, Weingarten P, Isermeyer F (2023) Bundesweite Landnutzungsdaten am Thünen-Institut : Sachstand und Perspektiven. Braunschweig: Johann Heinrich von Thünen-Institut, 41 p, Thünen Working Paper 213, DOI:10.3220/WP1683702994000

    https://literatur.thuenen.de/digbib_extern/dn066325.pdf

  56. 55

    Tetteh GO, Schwieder M, Erasmi S, Conrad C, Gocht A (2023) Comparison of an optimised multiresolution segmentation approach with deep neural networks for delineating agricultural fields from Sentinel-2 images. J Photogramm Remote Sensing Geoinf Sci 91(4):295-312, DOI:10.1007/s41064-023-00247-x

    https://literatur.thuenen.de/digbib_extern/dn066421.pdf

  57. 56

    Osterburg B, Ackermann A, Böhm J, Bösch M, Dauber J, Witte T de, Elsasser P, Erasmi S, Gocht A, Hansen H, Heidecke C, Klimek S, Krämer C, Kuhnert H, Moldovan A, Nieberg H, Pahmeyer C, Plaas E, Rock J, Röder N, Söder M, Tetteh GO, Tiemeyer B, Tietz A, Wegmann J, Zinnbauer M (2023) Flächennutzung und Flächennutzungsansprüche in Deutschland. Braunschweig: Johann Heinrich von Thünen-Institut, 98 p, Thünen Working Paper 224, DOI:10.3220/WP1697436258000

    https://literatur.thuenen.de/digbib_extern/dn067046.pdf

  58. 57

    Holtgrave A-K, Lobert F, Erasmi S, Röder N, Kleinschmit B (2023) Grassland mowing event detection using combined optical, SAR, and weather time series. Remote Sens Environ 295:113680, DOI:10.1016/j.rse.2023.113680

    https://literatur.thuenen.de/digbib_extern/dn066527.pdf

  59. 58

    Schlund M, Erasmi S, Knohl A (2023) High-resolution true-color orthophotos with 10 cm resolution 2022 [Datenpublikation] [online]. Göttingen: GROdata, zu finden in <https://data.goettingen-research-online.de/dataset.xhtml?persistentId=doi:10.25625/S6JS8E> [zitiert am 18.10.2023], DOI:10.25625/S6JS8E

  60. 59

    Hauck M, Klinge M, Erasmi S, Dulamsuren C (2023) No signs of long-term greening trend in Western Mongolian Grasslands. Ecosystems 26(5):1125-1143, DOI:10.1007/s10021-023-00819-3

    https://literatur.thuenen.de/digbib_extern/dn066009.pdf

  61. 60

    Schlund M, Erasmi S, Knohl A (2023) Rasters for ALS metrics at 1000m2 resolution 2022 [Datenpublikation] [online]. Göttingen: GROdata, zu finden in <https://data.goettingen-research-online.de/dataset.xhtml?persistentId=doi:10.25625/J93NG5> [zitiert am 18.10.2023], DOI:10.25625/J93NG5

  62. 61

    Schlund M, Erasmi S, Knohl A (2023) Rasters for ALS metrics at 10m resolution 2022 [Datenpublikation] [online]. Göttingen: GROdata, zu finden in <https://data.goettingen-research-online.de/dataset.xhtml?persistentId=doi:10.25625/39VQPW> [zitiert am 18.10.2023], DOI:10.25625/39VQPW

  63. 62

    Schlund M, Erasmi S, Knohl A (2023) Rasters for ALS metrics at 50m resolution 2022 [Datenpublikation] [online]. Göttingen: GROdata, zu finden in <https://data.goettingen-research-online.de/dataset.xhtml?persistentId=doi:10.25625/KBPPPL> [zitiert am 18.10.2023], DOI:10.25625/KBPPPL

  64. 63

    Wenzel A, Westphal C, Ballauff J, Berkelmann D, Brambach F, Buchori D, Camaretta N, Corre MD, Darras K, Erasmi S, Formaglio G, Hölscher D, Al-Amin Iddris N, Irawan B, Knohl A, Kotowska MM, Krashevska V, Kreft H, Mulyani Y, Mußhoff O, et al (2023) Trade-offs and synergies of economic and ecological functions across oil palm systems. In: Brückner D, Kietzmann K (eds) Book of abstracts : 52nd Annual Meeting of the Ecological Society of Germany, Austria and Switzerland ; Leipzig - 12-16 September 2023. Berlin: Gesellschaft für Ökologie, p 148

  65. 64

    Schlund M, Wenzel A, Camarretta N, Stiegler C, Erasmi S (2023) Vegetation canopy height estimation in dynamic tropical landscapes with TanDEM-X supported by GEDI data. Methods Ecol Evol 14(7):1639-1656, DOI:10.1111/2041-210X.13933

    https://literatur.thuenen.de/digbib_extern/dn065101.pdf

  66. 65

    Schlund M, Erasmi S, Knohl A (2022) Airborne acquisition extent 2020 [Datenpublikation] [online]. Göttingen: GROdata, zu finden in <https://data.goettingen-research-online.de/dataset.xhtml?persistentId=doi:10.25625/EKRJI2> [zitiert am 16.11.2023], DOI:10.25625/EKRJI2

  67. 66

    Camarretta N, Knohl A, Erasmi S, Schlund M (2022) Core plots hyperspectral vegetation indices [Datenpublikation] [online]. 1 TAB-File, 43.2 KB. Göttingen: GROdata, zu finden in <https://data.goettingen-research-online.de/dataset.xhtml?persistentId=doi:10.25625/BXLGQJ> [zitiert am 16.11.2023], DOI:10.25625/BXLGQJ

  68. 67

    Schlund M, Erasmi S, Knohl A (2022) High-resolution true-color orthophotos with 5 cm resolution [Datenpublikation] [online]. Göttingen: GROdata, zu finden in <https://data.goettingen-research-online.de/dataset.xhtml?persistentId=doi:10.25625/1RB4CC> [zitiert am 16.11.2023], DOI:10.25625/1RB4CC

  69. 68

    Schlund M, Erasmi S, Knohl A (2022) Land use maps 2020 based on LiDAR [Datenpublikation] [online]. Göttingen: GROdata, zu finden in <https://data.goettingen-research-online.de/dataset.xhtml?persistentId=doi:10.25625/LOPQ2K> [zitiert am 16.11.2023], DOI:10.25625/LOPQ2K

  70. 69

    Camarretta N, Knohl A, Erasmi S, Schlund M (2022) Landscape Assessment (LA) hyperspectral vegetation indices [Datenpublikation] [online]. 1 TAB-File, 114.1 KB. Göttingen: GROdata, zu finden in <https://data.goettingen-research-online.de/dataset.xhtml?persistentId=doi:10.25625/1LI57Z> [zitiert am 16.11.2023], DOI:10.25625/1LI57Z

  71. 70

    Schlund M, Erasmi S, Knohl A (2022) Landscape Assessment plots maps (with RGB, canopy height, NDVI and 3d point cloud) [Datenpublikation] [online]. Göttingen: GROdata, zu finden in <https://data.goettingen-research-online.de/dataset.xhtml?persistentId=doi:10.25625/MDWJR3> [zitiert am 16.11.2023], DOI:10.25625/MDWJR3

  72. 71

    Schwieder M, Wesemeyer M, Frantz D, Pfoch K, Erasmi S, Pickert J, Nendel C, Hostert P (2022) Mapping grassland mowing events across Germany based on combined Sentinel-2 and Landsat 8 time series. Remote Sens Environ 269:112795, DOI:10.1016/j.rse.2021.112795

    https://literatur.thuenen.de/digbib_extern/dn064247.pdf

  73. 72

    Blickensdörfer L, Schwieder M, Pflugmacher D, Nendel C, Erasmi S, Hostert P (2022) Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sens Environ 269:112831, DOI:10.1016/j.rse.2021.112831

    https://literatur.thuenen.de/digbib_extern/dn064297.pdf

  74. 73

    Lobert F, Röder N, Gocht A, Schwieder M, Erasmi S (2022) Mowing detection from combined Sentinel-1, Sentinel-2, and Landsat 8 time series on fallow cropland with transfer learning. Publikationen der DGPF eV 30:117-126

  75. 74

    Camarretta N, Knohl A, Erasmi S, Schlund M (2022) Normalized Difference Vegetation Indices (NDVIs) at 1 m resolution [Datenpublikation] [online]. 4 TIFF-Files. Göttingen: GROdata, zu finden in <https://data.goettingen-research-online.de/dataset.xhtml?persistentId=doi:10.25625/AIDFG2> [zitiert am 16.11.2023], DOI:10.25625/AIDFG2

  76. 75

    Schlund M, Erasmi S, Knohl A (2022) Rasters for ALS metrics at 1000m2 resolution [Datenpublikation] [online]. Göttingen: GROdata, zu finden in <https://data.goettingen-research-online.de/dataset.xhtml?persistentId=doi:10.25625/TJNWUI> [zitiert am 18.10.2023], DOI:10.25625/TJNWUI

  77. 76

    Camarretta N, Knohl A, Erasmi S, Schlund M (2022) Rasters for ALS metrics at 10m resolution [Datenpublikation] [online]. Göttingen: GROdata, zu finden in <https://data.goettingen-research-online.de/dataset.xhtml?persistentId=doi:10.25625/HWTBW5> [zitiert am 16.11.2023], DOI:10.25625/HWTBW5

  78. 77

    Camarretta N, Knohl A, Erasmi S, Schlund M (2022) Rasters for ALS metrics at 50m resolution [Datenpublikation] [online]. Göttingen: GROdata, zu finden in <https://data.goettingen-research-online.de/dataset.xhtml?persistentId=doi:10.25625/6JQDNA> [zitiert am 16.11.2023], DOI:10.25625/6JQDNA

  79. 78

    Schlund M, Erasmi S (2022) Rasters of vegetation canopy height estimated with spaceborne TanDEM-X data [Datenpublikation] [online]. Göttingen: GROdata, zu finden in <https://data.goettingen-research-online.de/dataset.xhtml?persistentId=doi:10.25625/QJZ9XI> [zitiert am 16.11.2023], DOI:10.25625/QJZ9XI

  80. 79

    Nketia KA, Asabere SB, Ramcharan A, Herbold S, Erasmi S, Sauer D (2022) Spatio-temporal mapping of soil water storage in a semi-arid landscape of northern Ghana - A multi-tasked ensemble machine-learning approach. Geoderma 410:115691, DOI:10.1016/j.geoderma.2021.115691

  81. 80

    Camarretta N, Knohl A, Erasmi S, Schlund M, Seidel D, Ehbrecht M (2021) ALS metrics for core plots [Datenpublikation] [online]. 1 TAB-File, 25.9 KB. Göttingen: GROdata, zu finden in <https://data.goettingen-research-online.de/dataset.xhtml?persistentId=doi:10.25625/AIKOI9> [zitiert am 16.11.2023], DOI:10.25625/AIKOI9

  82. 81

    Camarretta N, Knohl A, Erasmi S, Schlund M, Seidel D, Ehbrecht M (2021) ALS metrics for Landscape Assessment (LA) plots within LiDAR boundaries [Datenpublikation] [online]. 1 TAB-File, 69.1 KB. Göttingen: GROdata, zu finden in <https://data.goettingen-research-online.de/dataset.xhtml?persistentId=doi:10.25625/NWX23T> [zitiert am 16.11.2023], DOI:10.25625/NWX23T

  83. 82

    Camarretta N, Ehbrecht M, Seidel D, Wenzel A, Zudhi M, Merk MS, Schlund M, Erasmi S, Knohl A (2021) ALS-derived metrics used in the manuscript "Using Airborne Laser Scanning to characterize land-use systems in a tropical landscape based on vegetation structural metrics" [Datenpublikation] [online]. 1 TAB-File, 39.5 KB. Göttingen: GROdata, zu finden in <https://data.goettingen-research-online.de/dataset.xhtml?persistentId=doi:10.25625/TH5KEX> [zitiert am 16.11.2023], DOI:10.25625/TH5KEX

  84. 83

    Lobert F, Holtgrave A-K, Schwieder M, Pause M, Gocht A, Vogt J, Erasmi S (2021) Detection of mowing events from combined Sentinel-1, Sentinel-2, and Landsat 8 time series with machine learning. Grassl Sci Europe 26:123-125

  85. 84

    Tetteh GO, Gocht A, Erasmi S, Schwieder M, Conrad C (2021) Evaluation of sentinel-1 and sentinel-2 feature sets for delineating agricultural fields in heterogeneous landscapes. IEEE Access 9:116702-116719, DOI:10.1109/ACCESS.2021.3105903

    https://literatur.thuenen.de/digbib_extern/dn063902.pdf

  86. 85

    Klinge M, Dulamsuren C, Schneider F, Erasmi S, Bayarsaikhan U, Sauer D, Hauck M (2021) Geoecological parameters indicate discrepancies between potential and actual forest area in the forest-steppe of Central Mongolia. For Ecosyst 8:55, DOI:10.1186/s40663-021-00333-9

    https://literatur.thuenen.de/digbib_extern/dn063892.pdf

  87. 86

    Schwieder M, Wesemeyer M, Frantz D, Pfoch K, Erasmi S, Pickert J, Nendel C, Hostert P (2021) Grassland mowing events across Germany detected from combined Sentinel-2 and Landsat 8 time series for the years 2017 - 2020 [Datenpublikation] [online]. Genève: Zenodo, zu finden in <https://zenodo.org/records/5571613> [zitiert am 03.12.2024], DOI:10.5281/zenodo.5571613

  88. 87

    Camarretta N, Knohl A, Erasmi S, Schlund M (2021) Landscape Assessment (LA) centre plot coordinates [Datenpublikation] [online]. Göttingen: GROdata, zu finden in <https://data.goettingen-research-online.de/dataset.xhtml?persistentId=doi:10.25625/SSN6RO> [zitiert am 16.11.2023], DOI:10.25625/SSN6RO

  89. 88

    Erasmi S, Klinge M, Dulamsuren C, Schneider F, Hauck M (2021) Modelling the productivity of Siberian larch forests from Landsat NDVI time series in fragmented forest stands of the Mongolian forest-steppe. Environ Monit Assessm 193:200, DOI:10.1007/s10661-021-08996-1

    https://literatur.thuenen.de/digbib_extern/dn063505.pdf

  90. 89

    Lobert F, Holtgrave A-K, Schwieder M, Pause M, Vogt J, Gocht A, Erasmi S (2021) Mowing event detection in permanent grasslands: Systematic evaluation of input features from Sentinel-1, Sentinel-2, and Landsat 8 time series. Remote Sens Environ 267:112751, DOI:10.1016/j.rse.2021.112751

    https://literatur.thuenen.de/digbib_extern/dn064075.pdf

  91. 90

    Schlund M, Lobert F, Erasmi S (2021) Potential of Sentinel-1 time series data for the estimation of season length in winter wheat phenology. In: Institute of Electrical and Electronics Engineers (ed) IGARSS 2021 - 2021 IEEE International Geoscience and Remote Sensing Symposium : proceedings ; 12-16 July 2021, Virtual Symposium, Brussels, Belgium. IEEE, pp 5917-5920, DOI:10.1109/IGARSS47720.2021.9554454

  92. 91

    Schlund M, Kotowska MM, Brambach F, Hein J, Wessel B, Camarretta N, Silalahi M, Surati Jaya IN, Erasmi S, Leuschner C, Kreft H (2021) Spaceborne height models reveal above ground biomass changes in tropical landscapes. Forest Ecol Manag 497:119497, DOI:10.1016/j.foreco.2021.119497

    https://literatur.thuenen.de/digbib_extern/dn063766.pdf

  93. 92

    Camarretta N, Ehbrecht M, Seidel D, Wenzel A, Zuhdi M, Merk MS, Schlund M, Erasmi S, Knohl A (2021) Using airborne laser scanning to characterize land-use systems in a tropical landscape based on vegetation structural metrics. Remote Sensing 13:4794, DOI:10.3390/rs13234794

    https://literatur.thuenen.de/digbib_extern/dn064242.pdf

  94. 93

    Holtgrave A-K, Röder N, Ackermann A, Erasmi S, Kleinschmit B (2020) Comparing Sentinel-1 and -2 data and indices for agricultural land use monitoring. Remote Sensing 12:2919, DOI:10.3390/rs12182919

    https://literatur.thuenen.de/digbib_extern/dn062663.pdf

  95. 94

    Schlund M, Erasmi S (2020) Sentinel-1 time series data for monitoring the phenology of winter wheat. Remote Sens Environ 246:111814, DOI:10.1016/j.rse.2020.111814

  96. 95

    Tetteh GO, Gocht A, Schwieder M, Erasmi S, Conrad C (2020) Unsupervised parameterization for optimal segmentation of agricultural parcels from satellite images in different agricultural landscapes. Remote Sensing 12(18):3096, DOI:10.3390/rs12183096

    https://literatur.thuenen.de/digbib_extern/dn062673.pdf

  97. 96

    Erasmi S, Semmler M, Schall P, Schlund M (2019) Sensitivity of bistatic TanDEM-X data to stand structural parameters in temperate forests. Remote Sensing 11(24):2966, DOI:10.3390/rs11242966

    https://literatur.thuenen.de/digbib_extern/dn061759.pdf

  98. 97

    Schneider J, Jungkunst HF, Wolf U, Schreiber P, Gazovic M, Miglovets M, Mikhaylov O, Grunwald D, Erasmi S, Wilmking M, Kutzbach L (2016) Russian boreal peatlands dominate the natural European methane budget. Environ Res Lett 11(1):14004, DOI:10.1088/1748-9326/11/1/014004

    https://literatur.thuenen.de/digbib_extern/dn061770.pdf

    Nach oben