Skip to main content
[Translate to English:]
[Translate to English:]
Institute of

FI Fisheries Ecology

Project

Monitoring of hazardous substances in marine biota


Lead Institute FI Institute of Fisheries Ecology

© Thünen-Institut/Beate Büttner

To which extend are marine fish contaminated today? Does the contamination level change in time and what are the consequences for the environment and for human consumers? Questions like these were adressed in the environmental monitoring performed by the Thünen Institute.

Background and Objective

The European Marine Strategy Framework Directive (MSFD) demands "good environmental status" in european seas. To reach this goal MSFD descriptor 8 includes contaminants to be monitored in fish. Thünen Institute of Fisheries Ecology samples fish in North Sea and Baltic Sea using own research vessels every year. In these samples - mainly in dab, herring an cod - contaminants were investigated. Some of these investigations last for 25 years so time series have been established and we can reveal potential temporal trends. The goal is to describe spatial and temporal contamination in fish as well as an assessment of the contamination level and of the "good environmental status" as demanded by MSFD.

Approach

The reseach cruises take place every year in late summer - a time when biological changes in fish are low and environmental year-to-year differences have minor influence on the results. Fish samples were taken to the lab to investigate selected organis contaminants as well as heavy metals. We also investigate biological parameters like age, condition and health of the fish.

Data and Methods

The methods used differ for every contaminant under investigation. They are state of the art and typically used in modern labs for environmental trace analytics. We use among othes liquid chromatography with fluorescence detection as well as atomic absobtion spectroscopy. Analytical quality assurance is always a part of what we do. Therefore we use certified reference materials and take part in international intercalibration trials.
The results were delivered to national and international data bases like MUDAB to contribute to current environmental assessments.

Our Research Questions

  • To which extend marine fish from the North Sea or from the Baltic are contaminated?
  • Do spatial differences in contamination level or composition exist?
  • Do temporal trends in contamination level exist?
  • Which biological factor influence data interpretation?
  • Can sources of contamination be identified?
  • How can the environmental status be asseds on base of the contaminantion level?
  • Do problems arise for human consumers from the contamination level in fish?

Preliminary Results

Hereinafter results for the heavy metal mercury (Hg) in fish musle are presented:

To which extend marine fish from the North Sea or from the Baltic are contaminated? Here: Hg in the period of 2010 to 2020.

  • Dab from the German Bight (sites N01 and GB1) exhibit a mean contamination level of 135 µg Hg/kg wet weight.
  • Dab from the western Baltic Sea (site B01) are contaminated in mean with 47 µg Hg/kg wet weight.
  • Herring from the Baltic Sea (site B10 and B11) are contaminated in mean with 10µg Hg/kg wet weight.
  • Cod from the Baltic Sea (site B10 and B11) are contaminated in mean with 31 µg Hg/kg wet weight.

Do spatial differences in contamination level or composition exist?
Yes, fish from coastal regions in the North Sea are higher contaminated than fish from the open North Sea.

Do temporal trends in contamination level exist?
This differs with the regions: While in some off-shore regions of the North Sea trend are negativ, shallow or not detectable, Hg levels in dab from the German Bight rise significantly in the last 25 years.

Which biological factor influence data interpretation?
Fish species and the age of animal play a role. Hg accumulates in fish with age. Ths means that older fish are higher contaminated than younger ones from the same species (bioaccumulation).

Can sources of contamination be identified?
In one study (Kammann et al., 2021) concerning dumped munition in the Baltic Sea it could be shown that Hg-contaning fuses of this munition are no source for elevated Hg in fish living there.

How can the environmental status be asseds on base of the contaminantion level?
The good environmental status for Hg in biota has not been reached yet.

Do problems arise for human consumers from the contamination level in fish?
No, EU food threshold of 500µg Hg/kg wet weight) is usually not exeeded. This is true for all above mentioned fish species.

Links and Downloads

 

www.ospar.com

www.helcom.fi

www.ices.dk

Thünen-Contact

Dr. Ulrike Kammann

Telephone
+ 49 471 94460 325

Funding Body

  • Federal Ministry of Food und Agriculture (BMEL)
    (national, öffentlich)

Duration

Permanent task 1.2001 - 12.2023

More Information

Projekt type:
Project status: ongoing

Publications

  1. 0

    Aust M-O, Nogueira P (2021) 2.5.5 Fische und Produkte des Meeres und der Binnengewässer. In: Umweltradioaktivität und Strahlenbelastung : Jahresbericht 2018. Bonn: Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU), pp 71-75

  2. 1

    Aust M-O, Nogueira P (2021) 2.5.6 Fische und Wasserpflanzen in der Umgebung von Anlagen nach Atomgesetz. In: Umweltradioaktivität und Strahlenbelastung : Jahresbericht 2018. Bonn: Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU), p 75

  3. 2

    Weichert FG, Axén C, Förlin L, Inostroza PA, Kammann U, Welling A, Sturve J, Asker N (2021) A multi-biomarker study on Atlantic salmon (Salmosalar L.) affected by the emerging Red Skin Disease in the Baltic Sea. J Fish Dis 44(4):429-440, DOI:10.1111/jfd.13288

    https://literatur.thuenen.de/digbib_extern/dn062843.pdf

  4. 3

    Kammann U, Aust M-O, Siegmund M, Schmidt N, Straumer K, Lang T (2021) Deep impact? Is mercury in dab (Limanda limanda) a marker for dumped munition? Results from munition dump site Kolberger Heide (Baltic Sea). Environ Monit Assessm 193:788, DOI:10.1007/s10661-021-09564-3

    https://literatur.thuenen.de/digbib_extern/dn064149.pdf

  5. 4

    Aust M-O, Nogueira P (2021) Radioaktive Stoffe in Fischen [online]. In: Umweltradioaktivität in der Bundesrepublik Deutschland : Bericht der Leitstellen des Bundes und des Bundesamtes für Strahlenschutz ; Stand 2021 ; Daten und Bewertung. Bonn: Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU), pp 71-76, zu finden in <http://nbn-resolving.de/urn:nbn:de:0221-2022010530428> [zitiert am 14.02.2022]

    https://literatur.thuenen.de/digbib_extern/dn064570.pdf

  6. 5

    Nogueira P, Aust M-O (2021) Trübe Aussichten für Fische? Modellierung der Strahlungseffekte auf Fischaugen mittels Monte-Carlo-Simulation [online]. In: Umweltradioaktivität in der Bundesrepublik Deutschland : Bericht der Leitstellen des Bundes und des Bundesamtes für Strahlenschutz ; Stand 2021 ; Daten und Bewertung. Bonn: Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU), pp 77-80, zu finden in <http://nbn-resolving.de/urn:nbn:de:0221-2022010530428> [zitiert am 14.02.2022]

    https://literatur.thuenen.de/digbib_extern/dn064572.pdf

  7. 6

    Nogueira P, Hiller M, Aust M-O (2019) Monte Carlo simulation of dose coefficients for a fish eye lens model exposed to monoenergetic electrons. J Environ Radioact 199-200:7-15, DOI:10.1016/j.jenvrad.2018.12.021

  8. 7

    Aust M-O, Herrmann J, Strobl C (2019) Radioaktive Abfälle im Nordatlantik : radioactive waste in the North-East Atlantic Ocean. Salzgitter: BfS, 72 p, BfS Schr 65/19

  9. 8

    Aust M-O, Nogueira P, Kanisch G (2018) Radioaktive Stoffe in Fischen. In: Umweltradioaktivität in der Bundesrepublik Deutschland : Bericht der Leitstellen des Bundes und des Bundesamtes für Strahlenschutz ; Stand 2017 ; Daten und Bewertung. Bonn: Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB), pp 58-63

  10. 9

    Eriksson M, Ikäheimonen TK, Jakobson E, Nielsen SP, Kämäräinen M, Lüning M, Aust M-O, Osvath I, Schmied S, Vilimaite-Silobritiene B, Suplinska M, Zalewska T, Vartti V-P (2018) Thematic Assessment of Radioactive Substances in the Baltic Sea, 2011-2015. Helsinki: HELCOM, 74 p, Baltic Sea Environ Proc 151

  11. 10

    Andersen JH, Murray C, Larsen MM, Green N, Hogasen T, Dahlgren E, Garnaga-Budré G, Gustavson K, Haarich M, Kallenbach EM, Mannio J, Strand J, KorpinenS (2016) Development and testing of a prototype tool for integrated assessment of chemical status in marine environments. Environ Monit Assessm 188:115, DOI:10.1007/s10661-016-5121-x

  12. 11

    Karl H, Kammann U, Aust M-O, Manthey-Karl M, Lüth Anja, Kanisch G (2016) Large scale distribution of dioxins, PCBs, heavy metals, PAHmetabolites and radionuclides in cod (Gadus morhua) from the North Atlantic and its adjacent seas. Chemosphere 149:294-303, DOI:10.1016/j.chemosphere.2016.01.052

  13. 12

    Schubert S, Keddig N, Gerwinski W, Neukirchen J, Kammann U, Haarich M, Hanel R, Theobald N (2016) Persistent organic pollutants in Baltic herring (Clupea harengus) - an aspect of gender. Environ Monit Assessm 188:388, DOI:10.1007/s10661-016-5363-7

  14. 13

    Aust M-O, Nogueira P, Kanisch G (2015) Die Reaktorkatastrophe von Fukushima und ihre Auswirkungen auf die Meeresumwelt. In: Umweltradioaktivität in der Bundesrepublik Deutschland : Bericht der Leitstellen des Bundes und des Bundesamtes für Strahlenschutz ; Stand 2014 ; Daten und Bewertung. Bonn: Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB), pp 61-65

  15. 14

    Aust M-O, Nogueira P, Kanisch G (2015) Radioaktive Stoffe in Fischen. In: Umweltradioaktivität in der Bundesrepublik Deutschland : Bericht der Leitstellen des Bundes und des Bundesamtes für Strahlenschutz ; Stand 2014 ; Daten und Bewertung. Bonn: Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB), pp 55-60

  16. 15

    Werschkun B, Banerji S, Basurko OC, David M, Fuhr F, Gollasch S, Grummt T, Haarich M, Jha AN, Kacan S, Kehrer A, Linders J, Mesbahi E, Pughiuc D, Richardson SD, Schwarz-Schulz B, Shah A, Theobald N, Gunten U von, Wieck S, et al (2014) Emerging risks from ballast water treatment: The run-up to the International Ballast Water Management Convention . Chemosphere 112:256-266, DOI:10.1016/j.chemosphere.2014.03.135

    https://literatur.thuenen.de/digbib_extern/dn053512.pdf

  17. 16

    Webster L, Roose P, Bersuder P, Kotterman M, Haarich M, Vorkamp K (2013) Determination of polychlorinated biphenyls (PCBs) in sediment and biota. Copenhagen: ICES, 18 p, ICES Techn Mar Environ Sci 53

  18. 17

    Kanisch G, Aust M-O (2013) Does the Fukushima NPP disaster affect the caesium activity of North Atlantic Ocean fish? Biogeosciences(10):5399-5410, DOI:10.5194/bg-10-5399-2013

    https://literatur.thuenen.de/digbib_extern/dn052255.pdf

  19. 18

    Haarich M, Lang T (2013) Wie belastet sind Fische aus der Ostsee? Meer Küste 4:20-21

  20. 19

    Haarich M (2012) Assessment of hazardous substances in marine environmental monitoring programmes : approaches and developments. BfR Wissensch 2012:113-118

  21. 20

    Haarich M (2011) Biomonitoring. In: Quevauviller P, Roose P, Vereet G (eds) Chemical marine monitoring : policy framework and analytical trends . Chichester: Wiley-Interscience, pp 261-284

  22. 21

    KorpinenS, Laamanen M, Andersen JH, Asplund L, Berger U, Bignert A, Boalt E, Broeg K, Brzozowska A, Cato I, Durkin M, Garnaga G, Gustavson K, Haarich M, Hedlund B, Köngäs P, Lang T, Larsen MM, Lehtonen KK, Murray C, et al (2010) Hazardous substances in the Baltic Sea : an integrated thematic assessment of hazardous substances in the Baltic Sea. Helsinki: Helsinki Commission, Baltic Sea Environ Proc 120B

  23. 22

    Oehme M, Theobald N, Baaß AC, Hüttig J, Reth M, Weigelt-Krenz S, Zencak Z, Haarich M (2008) R&D-project: Identification of organic compounds in the North and Baltic Seas : final report ; period: 1.05.2002 - 31.12.2005. Dessau: Umweltbundesamt, 244 p, Texte UBA 28

    Scroll to top