Skip to main content
[Translate to English:]
[Translate to English:]
Institute of

AK Climate-Smart Agriculture

Peer-reviewed scientific paper by Andreas Pacholski

  1. 0

    Kemmann B, Brokötter J, Götze H, Kelsch A, Frössl J, Riesch S, Heinemann P, Kukowski S, Pacholski AS, Flessa H (2025) Ammonia emissions from urea fertilization - Multi-annual micrometeorological measurements across Germany. Agric Ecosyst Environ 381:109416, DOI:10.1016/j.agee.2024.109416

    https://literatur.thuenen.de/digbib_extern/dn069198.pdf

  2. 1

    Götze H, Brokötter J, Frössl J, Kelsch A, Kukowski S, Pacholski AS (2025) Assessment of different methods to determine NH3 emissions from small field plots after fertilization. Environments 12(8):255, DOI:10.3390/environments12080255

    https://literatur.thuenen.de/digbib_extern/dn069924.pdf

  3. 2

    Sixt T, Pacholski AS, Winkhart F, Jaufmann E, Schmid H, Hülsbergen KJ (2025) Does woody biochar mixed with liquid organic fertilizer reduce ammonia volatilization following field application? Nutr Cycl Agroecosyst 131(1):165-184, DOI:10.1007/s10705-025-10415-7

    https://literatur.thuenen.de/digbib_extern/dn069894.pdf

  4. 3

    Götze H, Buchen-Tschiskale C, Eder L, Pacholski AS (2025) Effects of inhibitors and slit incorporation on NH3 and N2O emission processes after urea application. Agric Ecosyst Environ 378:109307, DOI:10.1016/j.agee.2024.109307

    https://literatur.thuenen.de/digbib_extern/dn068857.pdf

  5. 4

    Sommer SG, Bittmann S, Pacholski AS (2025) Expert opinion : improving process knowledge about ammonia emission from field applied liquid manure. Biosyst Eng 260:104304, DOI:10.1016/j.biosystemseng.2025.104304

  6. 5

    Hafner SD, Pedersen J, Fuß R, Kamp JN, Dalby FR, Amon B, Pacholski AS, Adamsen APS, Sommer SG (2025) Improved tools for estimation of ammonia emission from field-applied animal slurry: Refinement of the ALFAM2 model and database. Atmos Environ 340:120910, DOI:10.1016/j.atmosenv.2024.120910

    https://literatur.thuenen.de/digbib_extern/dn069024.pdf

  7. 6

    Schoof J, Fuß R, Wulf S, Pacholski AS (2025) Regionalized ammonia emission abatement by urease inhibitor treatment of urea for agro-environmental conditions of Western Central Europe. Geoderma 457:117285, DOI:10.1016/j.geoderma.2025.117285

    https://literatur.thuenen.de/digbib_extern/dn069671.pdf

  8. 7

    Kamp JN, Hafner SD, Huijsmans J, Boheemen K van, Götze H, Pacholski AS, Pedersen J (2024) Comparison of two micrometeorological and three enclosure methods for measuring ammonia emission after slurry application in two field experiments. Agric Forest Meteorol 354:110077, DOI:10.1016/j.agrformet.2024.110077

    https://literatur.thuenen.de/digbib_extern/dn068332.pdf

  9. 8

    Pedersen J, Hafner SD, Pacholski AS, Karlsson VI, Rong L, Labouriau R, Kamp JN (2024) Evaluation of optimized flux chamber design for measurement of ammonia emission after field application of slurry with full-scale farm machinery. Atmos Measurem Techniques 17(14):4493-4505, DOI:10.5194/amt-17-4493-2024

    https://literatur.thuenen.de/digbib_extern/dn068536.pdf

  10. 9

    Hutchings NJ, Petersen SO, Richards KG, Pacholski AS, Fuß R, Abalos D, Forrestal PJ, Pelster D, Eckard RJ, Alfaro M, Smith KE, Thorman R, Butterbach-Bahl K, Chirinda N, Bittmann S, Klein CAM de, Amon B, van der Weerden TJ, Prado A del, Krol DJ (2024) Preconditions for including the effects of urease and nitrification inhibitors in emission inventories. Global Change Biol 30(12):e17618, DOI:10.1111/gcb.17618

  11. 10

    Herrmann A, Verma S, Techow A, Kluß C, Dittert K, Quakernack R, Pacholski AS, Kage H, Taube F (2023) Assessing nitrous oxide emissions and productivity of cropping systems for biogas production using digestate and mineral fertilisation in a coastal marsh site. Front Environ Sci 11:1231767, DOI:10.3389/fenvs.2023.1231767

    https://literatur.thuenen.de/digbib_extern/dn067373.pdf

  12. 11

    Götze H, Saul M, Jiang Y, Pacholski AS (2023) Effect of incorporation techniques and soil properties on NH3 and N2O emissions after urea application. Agronomy 13(10):2632, DOI:10.3390/agronomy13102632

    https://literatur.thuenen.de/digbib_extern/dn066871.pdf

  13. 12

    Huf M, Reinsch T, Kluß C, Essich C, Ruser R, Buchen-Tschiskale C, Pacholski AS, Flessa H, Olfs H-W (2023) Evaluation of calibrated passive sampling for quantifying ammonia emissions in multi-plot field trials with slurry application. J Plant Nutr Soil Sci 186(4):451-463, DOI:10.1002/jpln.202200333

    https://literatur.thuenen.de/digbib_extern/dn066562.pdf

  14. 13

    Ni K, Vietinghoff M, Pacholski AS (2023) Targeting yield and reducing nitrous oxide emission by use of single and double inhibitor treated urea during winter wheat season in Northern Germany. Agric Ecosyst Environ 347:108391, DOI:10.1016/j.agee.2023.108391

    https://literatur.thuenen.de/digbib_extern/dn066013.pdf

  15. 14

    Cheng Y, Elrys AS, Wang J, Xu C, Ni K, Zhang J, Wang S, Cai Z, Pacholski AS (2022) Application of enhanced-efficiency nitrogen fertilizers reduces mineral nitrogen usage and emissions of both N2O and NH3 while sustaining yields in a wheat-rice rotation system. Agric Ecosyst Environ 324:107720, DOI:10.1016/j.agee.2021.107720

  16. 15

    Sommer SG, Hafner SD, Laubach J, van der Weerden TJ, Leytem AB, Pacholski AS (2022) Model for calculating ammonia emission from stored animal liquid manure. Biosyst Eng 223, PART A:41-55, DOI:10.1016/j.biosystemseng.2022.08.007

    https://literatur.thuenen.de/digbib_extern/dn065456.pdf

  17. 16

    Ni K, Pacholski AS (2022) Soil moisture and temperature effects on granule dissolution and urease activity of urea with and without inhibitors - an incubation study. Agriculture 12(12):2037, DOI:10.3390/agriculture12122037

    https://literatur.thuenen.de/digbib_extern/dn065664.pdf

  18. 17

    Wagner C, Nyord T, Vestergaard A, Hafner SD, Pacholski AS (2021) Acidification effects on in situ ammonia emissions and cereal yields depending on slurry type and application method. Agriculture 11(11):1053, DOI:10.3390/agriculture11111053

    https://literatur.thuenen.de/digbib_extern/dn064110.pdf

  19. 18

    Frerichs C, Daum D, Pacholski AS (2021) Determination of ammonia exposure of potted herbs in organic cultivation. Acta Hortic 1327:167-174, DOI:10.17660/ActaHortic.2021.1327.22

  20. 19

    Paeßens B, Manderscheid R, Pacholski AS, Varga B, Erbs M, Kage H, Sieling K, Weigel H-J (2019) Effects of free-air CO2 enrichment and drought on root growth of field grown maize and sorghum. J Agron Crop Sci 205(5):477-489, DOI:10.1111/jac.12339

  21. 20

    Manderscheid R, Frühauf C, Pacholski AS, Weigel H-J (2018) Data from the Braunschweig FACE (free-air CO2 enrichment) experiments on sugar beet at adequate and low levels of nitrogen supply. Open Data J Agric Res 5:11-15, DOI:10.18174/odjar.v5i0.16225

    https://literatur.thuenen.de/digbib_extern/dn061367.pdf

  22. 21

    Yin X, Kersebaum KC, Kollas C, Baby S, Beaudoin N, Manevski K, Palosuo T, Nendel C, Wu L, Hoffmann MP, Hoffmann H, Sharif B, Armas-Herrera CM, Bindi M, Charfeddine M, Conradt T, Constantin J, Manderscheid R, Pacholski AS, Weigel H-J, et al (2017) Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe. Eur J Agron 84:152-165, DOI:10.1016/j.eja.2016.12.009

  23. 22

    Yin X, Kersebaum KC, Kollas C, Manevski K, Baby S, Beaudoin N, Öztürk I, Gaiser T, Wu L, Hoffmann MP, Charfeddine M, Conradt T, Constantin J, Ewert F, Garcia de Cortazar-Atauri I, Giglio L, Hlavinka P, Manderscheid R, Pacholski AS, Weigel H-J, et al (2017) Performance of process-based models for simulation of grain N in crop rotations across Europe. Agric Syst 154:63-77, DOI:10.1016/j.agsy.2017.03.005

  24. 23

    Kollas C, Kersebaum KC, Nendel C, Manevski K, Müller C, Palosuo T, Beaudoin N, Bindi M, Manderscheid R, Pacholski AS, Weigel H-J, et al (2015) Crop rotation modelling - a European model intercomparison. Eur J Agron 70:98-111, DOI:10.1016/j.eja.2015.06.007

  25. 24

    Pacholski AS, Manderscheid R, Weigel H-J (2015) Effects of free air CO2 enrichment on root growth of barley, sugar beet and wheat grown in a rotation under different nitrogen supply. Eur J Agron 63:36-46, DOI:10.1016/j.eja.2014.10.005

  26. 25

    Siemens J, Pacholski AS, Heiduk K, Giesemann A, Schulte U, Dechow R, Kaupenjohann M, Weigel H-J (2012) Elevated air carbon dioxide concentrations increase dissolved carbon leaching from a cropland soil. Biogeochemistry 108(1-3):135-148, DOI:10.1007/s10533-011-9584-0

  27. 26

    Manderscheid R, Pacholski AS, Weigel H-J (2010) Effect of free air carbon dioxide enrichment combined with two nitrogen levels on growth, yield and yield quality of sugar beet: Evidence for a sink limitation of beet growth under elevated CO2. Eur J Agron 32(3):228-239, DOI:10.1016/j.eja.2009.12.002

  28. 27

    Erbs M, Manderscheid R, Jansen G, Seddig S, Pacholski AS, Weigel H-J (2010) Effects of free-air CO2 enrichment and nitrogen supply on grain quality parameters and elemental composition of wheat and barley grown in a crop rotation. Agric Ecosyst Environ 136(1-2):59-68, DOI:10.1016/j.agee.2009.11.009

  29. 28

    Manderscheid R, Pacholski AS, Frühauf C, Weigel H-J (2009) Effects of free air carbon dioxide enrichment and nitrogen supply on growth and yield of winter barley cultivated in a crop rotation. Field Crops Res 110(3):185-196, DOI:10.1016/j.fcr.2008.08.002

  30. 29

    Martens R, Heiduk K, Pacholski AS, Weigel H-J (2009) Repeated 14CO2 pulse-labelling reveals an additional net gain of soil carbon during growth of spring wheat under free air carbon dioxide enrichment (FACE). Soil Biol Biochem 41(12):2422-2429, DOI:10.1016/j.soilbio.2009.08.018

  31. 30

    Pacholski AS (2006) Effects of elevated atmospheric CO2 concentrations on barley, sugar beet and wheat in a rotation: Examples from the Braunschweig carbon project. Landbauforsch Völkenrode 56(3):101-115

  32. 31

    Weigel H-J, Pacholski AS, Waloszczyk K, Frühauf C, Manderscheid R, Anderson T-H, Heinemeyer O, Kleikamp B, Helal M, Burkart S, Schrader S, Sticht C, Giesemann A (2006) Zur Wirkung erhöhter atmosphärischer CO2-Konzentrationen auf Wintergerste, Zuckerrübe und Winterweizen in einer Fruchtfolge : Beispiele aus dem Braunschweiger Kohlenstoffprojekt. Landbauforsch Völkenrode 56(3-4):101-115

    https://literatur.thuenen.de/digbib_extern/bitv/zi040336.pdf

  33. 32

    Weigel H-J, Pacholski AS, Burkart S, Helal M, Heinemeyer O, Kleikamp B, Manderscheid R, Frühauf C, Hendrey GF, Lewin K, Nagy J (2005) Carbon turnover in a crop rotation under free air CO2 enrichment (FACE). Pedosphere 15(6):728-738

  34. 33

    Cai G, Chen D, White RE, Fan XH, Pacholski AS, Zhu ZL, Ding H (2002) Gaseous nitrogen losses from urea applied to maize on a calcareous fluvo-aquic soil in the North China Plain. Aust J Soil Res 40(5):737-748

    Scroll to top