Skip to main content

Publications

  1. 0

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2025) Agricultural land use (raster) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2023) [Datenpublikation]. 1 ZIP archive; Version 201. Genève: Zenodo, DOI:10.5281/zenodo.15055561

  2. 1

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2025) Agricultural land use (raster) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2023) [Datenpublikation]. 1 ZIP archive; Version 202. Genève: Zenodo, DOI:10.5281/zenodo.15309479

  3. 2

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2025) Agricultural land use (raster) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2024) [Datenpublikation]. 1 ZIP archive; Version 201. Genève: Zenodo, DOI:10.5281/zenodo.16949898

  4. 3

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2025) Agricultural land use (raster) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2024) [Datenpublikation]. 1 ZIP archive; Version 201. Genève: Zenodo, DOI:10.5281/zenodo.17122420

  5. 4

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2025) Agricultural land use (raster) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2024) [Datenpublikation]. 1 ZIP archive; Version 202. Genève: Zenodo, DOI:10.5281/zenodo.17122646

  6. 5

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2025) Agricultural land use (vector) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2023) [Datenpublikation]. 1 ZIP archive; Version 201. Genève: Zenodo, DOI:10.5281/zenodo.17135735

  7. 6

    Schwieder M, Lobert F, Tetteh GO, Erasmi S (2025) Grassland mowing events across Germany detected from combined Sentinel-2 and Landsat time series for the year 2023 [Datenpublikation]. 1 ZIP archive; Version 1. Genève: Zenodo, DOI:10.5281/zenodo.16941138

  8. 7

    Schwieder M, Lobert F, Tetteh GO, Erasmi S (2025) Grassland mowing events across Germany detected from combined Sentinel-2 and Landsat time series for the year 2024 [Datenpublikation]. 1 ZIP archive; Version 1. Genève: Zenodo, DOI:10.5281/zenodo.16942505

  9. 8

    Lobert F (2025) Remote sensing of cropland dynamics for climate-related agricultural monitoring in Germany. Berlin: Humboldt-Univ, xxi, 175 p, Berlin, Humboldt-Univ, Mathematisch-Naturwiss Fak, Diss, DOI:10.18452/34374

    https://literatur.thuenen.de/digbib_extern/dn070726.pdf

  10. 9

    Brög T (2025) Remote sensing-based monitoring of cropland soil organic carbon. Tübingen: Eberhard Karls Univ, xxvii, 283 p, Tübingen, Univ, Mathematisch-Naturwiss Fak, Diss, 2025, DOI:10.15496/publikation-114189

    https://literatur.thuenen.de/digbib_extern/dn070725.pdf

  11. 10

    Wang Y, Rammig A, Blickensdörfer L, Wang Y, Zhu XX, Buras A (2025) Species-specific responses of canopy greenness to the extreme droughts of 2018 and 2022 for four abundant tree species in Germany. Sci Total Environ 958:177938, DOI:10.1016/j.scitotenv.2024.177938

    https://literatur.thuenen.de/digbib_extern/dn069320.pdf

  12. 11

    Lobert F, Schwieder M, Alsleben J, Brög T, Kowalski K, Okujeni A, Hostert P, Erasmi S (2025) Unveiling year-round cropland cover by soil-specific spectral unmixing of Landsat and Sentinel-2 time series. Remote Sens Environ 318:114594, DOI:10.1016/j.rse.2024.114594

    https://literatur.thuenen.de/digbib_extern/dn069411.pdf

  13. 12

    Schwieder M, Tetteh GO, Blickensdörfer L, Gocht A, Erasmi S (2024) Agricultural land use (raster) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2017 to 2021) ; Version 201 [Datenpublikation] [online]. 5 TIFF files, 1 PDF file, 2 CLR files. Genève: Zenodo, zu finden in <https://zenodo.org/records/10617623> [zitiert am 07.03.2024], DOI:10.5281/zenodo.10617623

  14. 13

    Schwieder M, Tetteh GO, Blickensdörfer L, Gocht A, Erasmi S (2024) Agricultural land use (raster) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2022) ; Version v201 [Datenpublikation] [online]. 6 TIFF files, 1 PDF file, 2 CLR files. Genève: Zenodo, zu finden in <https://zenodo.org/records/10628809> [zitiert am 07.03.2024], DOI:10.5281/zenodo.10628809

  15. 14

    Schwieder M, Tetteh GO, Blickensdörfer L, Gocht A, Erasmi S (2024) Agricultural land use (raster) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2022) ; Version v202 [Datenpublikation] [online]. 1 TIFF file, 1 PDF file, 2 CLR files. Genève: Zenodo, zu finden in <https://zenodo.org/records/10645427> [zitiert am 07.03.2024], DOI:10.5281/zenodo.10645427

  16. 15

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2024) Agricultural land use (vector) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2017 to 2021) [Datenpublikation] [online]. 2 PDF files, 5 FGB files, 1 SLD file. Genève: Zenodo, zu finden in <https://zenodo.org/records/10619783> [zitiert am 07.03.2024], DOI:10.5281/zenodo.10619783

  17. 16

    Tetteh GO, Schwieder M, Blickensdörfer L, Gocht A, Erasmi S (2024) Agricultural land use (vector) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2022) [Datenpublikation] [online]. 1 FGB file, 1 PDF file, 1 SLD file. Genève: Zenodo, zu finden in <https://zenodo.org/records/10621629> [zitiert am 07.03.2024], DOI:10.5281/zenodo.10621629

  18. 17

    Peters F, Kempe A, Kübler D, Günter S (2024) Evaluating forest degradation, deforestation, and reforestation in Boeny and DIANA: Current efforts and future opportunities. Braunschweig: Johann Heinrich von Thünen-Institut, 116 p, Thünen Working Paper 248, DOI:10.3220/WP1728377983000

    https://literatur.thuenen.de/digbib_extern/dn068880.pdf

  19. 18

    Langner N, Puhm M, Deutscher J, Wimmer A, Adler P, Backa J, Eisenecker P, Reinosch E, Wiesehahn J, Hoffmann K, Oehmichen K (2024) FNEWS-Jahresprodukte 2018 bis 2022 [Datenpublikation] [online]. Braunschweig: Thünen-Atlas, zu finden in <https://atlas.thuenen.de/layers/geonode_data:geonode:fnews_jp_18_22> [zitiert am 08.03.2024], DOI:10.3220/DATA20240307175924-0

  20. 19

    Schwieder M, Lobert F, Tetteh GO, Erasmi S (2024) Grassland mowing events across Germany detected from combined Sentinel-2 and Landsat time series for the year 2022 [Datenpublikation] [online]. 1 TIFF file. Genève: Zenodo, zu finden in <https://zenodo.org/records/10610283> [zitiert am 07.03.2024], DOI:10.5281/zenodo.10610283

  21. 20

    Schwieder M, Lobert F, Tetteh GO, Erasmi S (2024) Grassland mowing events across Germany detected from combined Sentinel-2 and Landsat time series for the years 2017 - 2021 [Datenpublikation] [online]. 5 TIFF files. Genève: Zenodo, zu finden in <https://zenodo.org/records/10609590> [zitiert am 07.03.2024], DOI:10.5281/zenodo.10609590

  22. 21

    Schmidt F, Kruse M, Paulsen HM (2024) Kohlenstoffspeicherung in Böden und Gehölzen in einem landwirtschaftlichen Betrieb. In: Bruder V, Röder-Dreher U, Breuer L, Herzig C, Gattinger A (eds) Landwirtschaft und Ernährung - Transformation macht nur gemeinsam Sinn : 17. Wissenschaftstagung Ökologischer Landbau, 5.-8. März 2024, Justus-Liebig-Universität Gießen ; Tagungsband. 1. Auflage. Frankfurt am Main: FiBL Deutschland eV, pp 372-373, DOI:10.5281/zenodo.11204339

    https://literatur.thuenen.de/digbib_extern/dn068369.pdf

  23. 22

    May PB, Schlund M, Armston J, Kotowska MM, Brambach F, Wenzel A, Erasmi S (2024) Mapping aboveground biomass in Indonesian lowland forests using GEDI and hierarchical models. Remote Sens Environ 313:114384, DOI:10.1016/j.rse.2024.114384

  24. 23

    Follath T, Mickisch D, Hemmerling J, Erasmi S, Schwieder M, Demir B (2024) Multi-modal vision transformers for crop mapping from satellite image time series. In: IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium : Athens, Greece, 17-12 July 2024. IEEE, DOI:10.1109/IGARSS53475.2024.10641794

  25. 24

    Langner N, Oehmichen K, Backa J, Eisenecker P, Reinosch E, Wiesehahn J, Hoffmann K, Adler P, Beckschäfer P (2024) Referenzdaten aus dem Projekt FNEWs [Datenpublikation] [online]. 1 GeoPackage, 2 PDF-Dateien. Göttingen: OpenAgrar Repository, zu finden in <https://atlas.thuenen.de/layers/geonode:referenzdaten_fnews_3_0> [zitiert am 12.01.2024], DOI:10.3220/DATA20240111153336-0

  26. 25

    Pham V-D, Tetteh GO, Thiel F, Erasmi S, Schwieder M, Frantz D, van der Linden S (2024) Temporally transferable crop mapping with temporal encoding and deep learning augmentations. Int J Appl Earth Observ Geoinf 129:103867, DOI:10.1016/j.jag.2024.103867

    https://literatur.thuenen.de/digbib_extern/dn068235.pdf

  27. 26

    Brög T, Don A, Gocht A, Scholten T, Taghizadeh-Mehrjardi R, Erasmi S (2024) Using local ensemble models and Landsat bare soil composites for large-scale soil organic carbon maps in cropland. Geoderma 444:116850, DOI:10.1016/j.geoderma.2024.116850

    https://literatur.thuenen.de/digbib_extern/dn067810.pdf

  28. 27

    Schwieder M, Tetteh GO, Blickensdörfer L, Gocht A, Erasmi S (2023) Agricultural land use (raster) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2017 to 2021) [Datenpublikation] [online]. 5 TIFF-Dateien, 2 Textdateien. Braunschweig: Thünen-Atlas, zu finden in <https://www.openagrar.de/receive/openagrar_mods_00087489> [zitiert am 10.07.2023], DOI:10.3220/DATA20230707103051-0

  29. 28

    Schwieder M, Tetteh GO, Blickensdörfer L, Gocht A, Erasmi S (2023) Agricultural land use (vector) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2017 to 2021) [Datenpublikation] [online]. 5 Geopackages, 2 Textdateien. Braunschweig: Thünen-Atlas, zu finden in <https://www.openagrar.de/receive/openagrar_mods_00087490> [zitiert am 10.07.2023], DOI:10.3220/DATA20230707103117-0

  30. 29

    Langner N, Puhm M, Deutscher J, Wimmer A, Adler P, Backa J, Eisenecker P, Reinosch E, Wiesehahn J, Hoffmann K, Oehmichen K (2023) FNEWS-Jahresprodukte 2018 bis 2022 [Datenpublikation] [online]. Braunschweig: Thünen-Atlas, zu finden in <https://atlas.thuenen.de/layers/geonode_data:geonode:fnews_jp_18_22> [zitiert am 19.12.2023], DOI:10.3220/DATA20230907171359-0

  31. 30

    Holtgrave A-K, Lobert F, Erasmi S, Röder N, Kleinschmit B (2023) Grassland mowing event detection using combined optical, SAR, and weather time series. Remote Sens Environ 295:113680, DOI:10.1016/j.rse.2023.113680

    https://literatur.thuenen.de/digbib_extern/dn066527.pdf

  32. 31

    Brög T, Blaschek M, Seitz S, Taghizadeh-Mehrjardi R, Zepp S, Scholten T (2023) Transferability of covariates to predict soil organic carbon in cropland soils. Remote Sensing 15(4):876, DOI:10.3390/rs15040876

    https://literatur.thuenen.de/digbib_extern/dn066098.pdf

  33. 32

    Schlund M, Wenzel A, Camarretta N, Stiegler C, Erasmi S (2023) Vegetation canopy height estimation in dynamic tropical landscapes with TanDEM-X supported by GEDI data. Methods Ecol Evol 14(7):1639-1656, DOI:10.1111/2041-210X.13933

    https://literatur.thuenen.de/digbib_extern/dn065101.pdf

  34. 33

    Herrmann GA, Padel S (2023) Verbesserung des Ökokontroll- und Zertifizierungssystems durch die Integration von digitalen Zertifizierungs- und Produkttransaktionsdaten und von geografischen Daten und die Entwicklung eines umsetzbaren technologischen Konzepts am Beispiel der Getreidekette [online]. Bonn: BLE, 66 p, zu finden in <https://orgprints.org/id/eprint/51755/> [zitiert am 15.12.2023]

    https://literatur.thuenen.de/digbib_extern/dn067357.pdf

  35. 34

    Hagemann N, Magdon P, Schnell S, Pommerening A (2022) Analysing gap dynamics in forest canopies with landscape metrics based on multi-temporal airborne laser scanning surveys - A pilot study. Ecol Indic 145:109627, DOI:10.1016/j.ecolind.2022.109627

    https://literatur.thuenen.de/digbib_extern/dn065844.pdf

  36. 35

    Gnilke A, Sanders TGM (2022) Distinguishing abrupt and gradual forest disturbances with MODIS-Based phenological anomaly series. Front Plant Sci 13:863116, DOI:10.3389/fpls.2022.863116

    https://literatur.thuenen.de/digbib_extern/dn064887.pdf

  37. 36

    Blickensdörfer L, Oehmichen K, Pflugmacher D, Kleinschmit B, Hostert P (2022) Dominant tree species for Germany (2017/2018) [Datenpublikation] [online]. Version 1.0, 1 Rasterdatei (tif). Eberswalde: Thünen-Institut für Waldökosysteme, zu finden in <https://www.openagrar.de/receive/openagrar_mods_00084346> [zitiert am 05.01.2023], DOI:10.3220/DATA20221214084846

  38. 37

    Schaber M, Gastauer S, Cisewski B, Hielscher NN, Janke M, Pena M, Sakinan S, Thorburn J (2022) Extensive oceanic mesopelagic habitat use of a migratory continental shark species. Sci Rep 12:2047, DOI:10.1038/s41598-022-05989-z

    https://literatur.thuenen.de/digbib_extern/dn064834.pdf

  39. 38

    Schwieder M, Wesemeyer M, Frantz D, Pfoch K, Erasmi S, Pickert J, Nendel C, Hostert P (2022) Mapping grassland mowing events across Germany based on combined Sentinel-2 and Landsat 8 time series. Remote Sens Environ 269:112795, DOI:10.1016/j.rse.2021.112795

    https://literatur.thuenen.de/digbib_extern/dn064247.pdf

  40. 39

    Blickensdörfer L, Schwieder M, Pflugmacher D, Nendel C, Erasmi S, Hostert P (2022) Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sens Environ 269:112831, DOI:10.1016/j.rse.2021.112831

    https://literatur.thuenen.de/digbib_extern/dn064297.pdf

  41. 40

    Weber R, Lippe M, Günter S (2022) Mapping tropical forests: implications and challenges for deforested landscapes and forest restoration. Examples from Zambia, Ecuador and Philippines : [paper for] XV World Forestry Congress, Coex, Soul, Republic of Korea, 2-6 May 2022. 9 p

  42. 41

    Lobert F, Röder N, Gocht A, Schwieder M, Erasmi S (2022) Mowing detection from combined Sentinel-1, Sentinel-2, and Landsat 8 time series on fallow cropland with transfer learning. Publikationen der DGPF eV 30:117-126

  43. 42

    Ferrer Velasco R, Lippe M, Tamayo F, Mfuni T, Sales-Come R, Mangabat C, Schneider T, Günter S (2022) Towards accurate mapping of forest in tropical landscapes: A comparison of datasets on how forest transition matters. Remote Sens Environ 274:112997, DOI:10.1016/j.rse.2022.112997

    https://literatur.thuenen.de/digbib_extern/dn064744.pdf

  44. 43

    Lobert F, Holtgrave A-K, Schwieder M, Pause M, Gocht A, Vogt J, Erasmi S (2021) Detection of mowing events from combined Sentinel-1, Sentinel-2, and Landsat 8 time series with machine learning. Grassl Sci Europe 26:123-125

  45. 44

    Tetteh GO, Gocht A, Erasmi S, Schwieder M, Conrad C (2021) Evaluation of sentinel-1 and sentinel-2 feature sets for delineating agricultural fields in heterogeneous landscapes. IEEE Access 9:116702-116719, DOI:10.1109/ACCESS.2021.3105903

    https://literatur.thuenen.de/digbib_extern/dn063902.pdf

  46. 45

    Klinge M, Dulamsuren C, Schneider F, Erasmi S, Bayarsaikhan U, Sauer D, Hauck M (2021) Geoecological parameters indicate discrepancies between potential and actual forest area in the forest-steppe of Central Mongolia. For Ecosyst 8:55, DOI:10.1186/s40663-021-00333-9

    https://literatur.thuenen.de/digbib_extern/dn063892.pdf

  47. 46

    Schulz C, Holtgrave A-K, Kleinschmit B (2021) Large-scale winter catch crop monitoring with Sentinel-2 time series and machine learning - An alternative to on-site controls? Comput Electron Agric 186:106173, DOI:10.1016/j.compag.2021.106173

  48. 47

    Erasmi S, Klinge M, Dulamsuren C, Schneider F, Hauck M (2021) Modelling the productivity of Siberian larch forests from Landsat NDVI time series in fragmented forest stands of the Mongolian forest-steppe. Environ Monit Assessm 193:200, DOI:10.1007/s10661-021-08996-1

    https://literatur.thuenen.de/digbib_extern/dn063505.pdf

  49. 48

    Lobert F, Holtgrave A-K, Schwieder M, Pause M, Vogt J, Gocht A, Erasmi S (2021) Mowing event detection in permanent grasslands: Systematic evaluation of input features from Sentinel-1, Sentinel-2, and Landsat 8 time series. Remote Sens Environ 267:112751, DOI:10.1016/j.rse.2021.112751

    https://literatur.thuenen.de/digbib_extern/dn064075.pdf

  50. 49

    Schlund M, Lobert F, Erasmi S (2021) Potential of Sentinel-1 time series data for the estimation of season length in winter wheat phenology. In: Institute of Electrical and Electronics Engineers (ed) IGARSS 2021 - 2021 IEEE International Geoscience and Remote Sensing Symposium : proceedings ; 12-16 July 2021, Virtual Symposium, Brussels, Belgium. IEEE, pp 5917-5920, DOI:10.1109/IGARSS47720.2021.9554454

  51. 50

    Burkhardt E, Opzeeland IC van, Cisewski B, Mattmüller R, Meister M, Schall E, Spiesecke S, Thomisch K, Zwicker S, Boebel O (2021) Seasonal and diel cycles of fin whale acoustic occurrence near Elephant Island, Antarctica. Royal Soc Open Sci 8:201142, DOI:10.1098/rsos.201142

    https://literatur.thuenen.de/digbib_extern/dn063644.pdf

  52. 51

    Schlund M, Kotowska MM, Brambach F, Hein J, Wessel B, Camarretta N, Silalahi M, Surati Jaya IN, Erasmi S, Leuschner C, Kreft H (2021) Spaceborne height models reveal above ground biomass changes in tropical landscapes. Forest Ecol Manag 497:119497, DOI:10.1016/j.foreco.2021.119497

    https://literatur.thuenen.de/digbib_extern/dn063766.pdf

  53. 52

    Camarretta N, Ehbrecht M, Seidel D, Wenzel A, Zuhdi M, Merk MS, Schlund M, Erasmi S, Knohl A (2021) Using airborne laser scanning to characterize land-use systems in a tropical landscape based on vegetation structural metrics. Remote Sensing 13:4794, DOI:10.3390/rs13234794

    https://literatur.thuenen.de/digbib_extern/dn064242.pdf

  54. 53

    Taylor MH, Akimova A, Bracher A, Kempf A, Kühn B, Helaouet P (2021) Using dynamic ocean color provinces to elucidate drivers of North Sea hydrography and ecology. JGR Oceans 126(12):e2021JC017686, DOI:10.1029/2021JC017686

    https://literatur.thuenen.de/digbib_extern/dn064301.pdf

  55. 54

    Siemon B, Ibs-von Seht M, Frank S (2020) Airborne electromagnetic and radiometric peat thickness mapping of a bog in Northwest Germany (Ahlen-Falkenberger Moor). Remote Sensing 12(2):203, DOI:10.3390/rs12020203

    https://literatur.thuenen.de/digbib_extern/dn061949.pdf

  56. 55

    Holtgrave A-K, Röder N, Ackermann A, Erasmi S, Kleinschmit B (2020) Comparing Sentinel-1 and -2 data and indices for agricultural land use monitoring. Remote Sensing 12:2919, DOI:10.3390/rs12182919

    https://literatur.thuenen.de/digbib_extern/dn062663.pdf

  57. 56

    Schwieder M, Buddeberg M, Kowalski K, Pfoch K, Bartsch J, Bach H, Pickert J, Hostert P (2020) Estimating grassland parameters from Sentinel-2: A model comparison study. J Photogramm Remote Sensing Geoinf Sci 88:379-390, DOI:10.1007/s41064-020-00120-1

    https://literatur.thuenen.de/digbib_extern/dn062563.pdf

  58. 57

    Martinez B, Gilabert MA, Sanchez-Ruiz S, Campos-Taberner M, Garcia-Haro FJ, Brümmer C, Carrara A, Feig G, Grünwald T, Mammarella I, Tagesson T (2020) Evaluation of the LSA-SAF gross primary production product derived from SEVIRI/MSG data (MGPP). ISPRS J Photogramm Remote Sens 159:220-236, DOI:10.1016/j.isprsjprs.2019.11.010

    https://literatur.thuenen.de/digbib_extern/dn061689.pdf

  59. 58

    Ackermann J, Adler P, Aufreiter C, Bauerhansl C, Bucher T, Franz S, Engels F, Ginzler C, Hoffmann K, Jütte K, Kenneweg H, Koukal T, Martin K, Oehmichen K, Rüffer O, Sagischewski H, Seitz R, Straub C, Tintrup G, Wasser L, Zielewska-Büttner K (2020) Oberflächenmodelle aus Luftbildern für forstliche Anwendungen : Leitfaden AFL 2020. 60 p WSL Ber 87

  60. 59

    Tetteh GO, Gocht A, Conrad C (2020) Optimal parameters for delineating agricultural parcels from satellite images based on supervised Bayesian optimization. Comput Electron Agric 178:105696, DOI:10.1016/j.compag.2020.105696

    https://literatur.thuenen.de/digbib_extern/dn062674.pdf

  61. 60

    Schlund M, Erasmi S (2020) Sentinel-1 time series data for monitoring the phenology of winter wheat. Remote Sens Environ 246:111814, DOI:10.1016/j.rse.2020.111814

  62. 61

    Smith NE, Kooijmans LMJ, Koren G, Schaik E van, Woude A van der, Wanders N, Ramonet M, Xueref-Remy I, Siebicke L, Manca G, Brümmer C, Baker IT, Haynes KD, Luijkx IT, Peters W (2020) Spring enhancement and summer reduction in carbon uptake during the 2018 drought in northwestern Europe. Philos Trans Royal Soc B 375(1810):20190509, DOI:10.1098/rstb.2019.0509

  63. 62

    Holtgrave A-K, Ackermann A, Röder N, Kleinschmit B (2020) Towards a dual-polarisation radar vegetation index for Sentinel-1 for grassland monitoring. Grassl Sci Europe 25:596-598

  64. 63

    Tetteh GO, Gocht A, Schwieder M, Erasmi S, Conrad C (2020) Unsupervised parameterization for optimal segmentation of agricultural parcels from satellite images in different agricultural landscapes. Remote Sensing 12(18):3096, DOI:10.3390/rs12183096

    https://literatur.thuenen.de/digbib_extern/dn062673.pdf

  65. 64

    Tetteh GO (2019) Establishment of a time-sensitive crop database of Germany based on multi-temporal Sentinel-1 and Sentinel-2 Data. In: Living Planet Symposium, Milan (Italy), May 13-17 2019.

  66. 65

    Lüken T (2019) Improving the reliability of FREL/FRL by different remote sensing systems. Hamburg: Univ Hamburg, Fakultät für Mathematik, Informatik und Naturwissenschaften, 41 p, Hamburg, Univ, Fak f Mathematik, Informatik und Naturwissenschaften, Fachber Biologie, Masterarb, 2019

  67. 66

    Ortmann A, Feilhauer H, Klimek S, Thiele J (2019) Mapping extensively used grassland types at a regional scale using multispectral remote sensing. In: 62nd Symposium of the International Association for Vegetation Science (IAVS). 14-19 July, Bremen, Germany.

  68. 67

    Asmuß T, Bechtold M, Tiemeyer B (2019) On the potential of Sentinel-1 for high resolution monitoring of water table dynamics in grasslands on organic soils. Remote Sensing 11(14):1659, DOI:10.3390/rs11141659

    https://literatur.thuenen.de/digbib_extern/dn061159.pdf

  69. 68

    Große-Stoltenberg A, Hellmann C, Thiele J, Werner C, Oldeland J (2019) Remote sensing of an N-fixing invasive shrub species: Early indicators of high impact. In: GfÖ 2019 : Science meets practice ; 49th Annual Meeting of the Ecological Society of Germany, Austria and Switzerland ; University of Münster, 9 - 13 September 2019 ; book of abstracts. Berlin: Gesellschaft für Ökologie, p 435

  70. 69

    Erasmi S, Semmler M, Schall P, Schlund M (2019) Sensitivity of bistatic TanDEM-X data to stand structural parameters in temperate forests. Remote Sensing 11(24):2966, DOI:10.3390/rs11242966

    https://literatur.thuenen.de/digbib_extern/dn061759.pdf

  71. 70

    Castaldi F, Chabrillat S, Don A, Wesemael B van (2019) Soil organic carbon mapping using LUCAS topsoil database and sentinel-2 data: an approach to reduce soil moisture and crop residue effects. Remote Sensing 11(18):2121, DOI:10.3390/rs11182121

    https://literatur.thuenen.de/digbib_extern/dn061373.pdf

  72. 71

    Krause S, Strer M, Mund J-P, Sanders TGM (2019) UAV remote sensing data handling: A transition from testing to long-term data acquisition for intensive forest monitoring. J Photogramm Remote Sensing Geoinf Sci 28(39):167-174

  73. 72

    Krause S, Sanders TGM, Mund J-P, Greve K (2019) UAV-based photogrammetric tree height measurement for intensive forest monitoring. Remote Sensing 11(7):758, DOI:10.3390/rs11070758

    https://literatur.thuenen.de/digbib_extern/dn060940.pdf

  74. 73

    Nguyen TT, Lippe M, Marohn C, Vien TD, Cadisch G (2019) Using farmer decision rules for mapping historical land use change patterns from 1954 to 2007 in rural northwestern Vietnam. Land 8(9):130, DOI:10.3390/land8090130

    https://literatur.thuenen.de/digbib_extern/dn061247.pdf

  75. 74

    Pisek J, Buddenbaum H, Camacho F, Hill J, Jensen JLR, Lange H, Liu Z, Piayda A, Qu Y, Roupsard O, Serbin SP, Solberg S, Sonnentag O, Thimonier A, Vuolo F (2018) Data synergy between leaf area index and clumping index Earth Observation products using photon recollision probability theory. Remote Sens Environ 215:1-6, DOI:10.1016/j.rse.2018.05.026

  76. 75

    Langkamp-Wedde T, Kraft M, Neeland H, Matschiner K, Kottmann L, Schittenhelm S (2018) Drohnenbasierte Fernerkundung in der Weizenzüchtung. Bornimer Agrartechn Ber 99:29-43

  77. 76

    Bechtold M, Schlaffer S, Tiemeyer B, de Lannoy G (2018) Inferring water table depth dynamics from ENVISAT-ASAR C-band backscatter over a range of peatlands from deeply-drained to natural conditions. Remote Sensing 10(4):536, DOI:10.3390/rs10040536

    https://literatur.thuenen.de/digbib_extern/dn059782.pdf

  78. 77

    Schnell S, Riedel T, Oehmichen K (2018) Integration von Fernerkundungsdaten in die Auswertung der Bundeswaldinventur. In: Ammer C, Bredemeier M, Arnim G von (eds) FowiTa : Forstwissenschaftliche Tagung 2018 Göttingen ; Programm & Abstracts ; 24. bis 26. September 2018. Göttingen: Univ Göttingen, Fakultät für Forstwissenschaften und Waldökologie, p 438

  79. 78

    Beckschäfer P, Schnell S, Kleinn C (2018) Monitoring and assessment of trees outside forests (TOF). In: Dagar JC, Tewari VP (eds) Agroforestry : anecdotal to modern science. Puchong, Selangor DE: Springer Singapore, pp 137-161, DOI:10.1007/978-981-10-7650-3_5

  80. 79

    Hartmann H, Schuldt B, Sanders TGM, Macinnis-Ng C, Boehmer HJ, Allen CD, Bolte A, Crowther TW, Matthew MC, Medlyn BE, Rühr NK, Anderegg WR (2018) Monitoring global tree mortality patterns and trends. Report from the VW symposium 'Crossing scales and disciplines to identify global trends of tree mortality as indicators of forest health'. New Phytol 217(3):984-987, DOI:10.1111/nph.14988

  81. 80

    Vohland M, Ludwig M, Thiele-Bruhn S, Ludwig B (2017) Quantification of soil properties with hyperspectral data: selecting spectral variables with different methods to improve accuracies and analyze prediction mechanisms. Remote Sensing 9(11):1103, DOI:10.3390/rs9111103

    https://literatur.thuenen.de/digbib_extern/dn059222.pdf

  82. 81

    Cisewski B, Strass VH (2016) Acoustic insights into the zooplankton dynamics of the eastern Weddell Sea. Progr Oceanogr 144:42-92, DOI:10.1016/j.pocean.2016.03.005

  83. 82

    Oehmichen K, Bauerhansl C, Ginzler C, Kroiher F, Straub C, Waser LT (2016) Comparison of different definitions for wooded land using high resolution remote sensing techniques - a cross-country case study. In: Wezyk P, Zieba K (eds) 3rd EARSel workshop SIG on Forestry and Young Scientist Days on Forestry Conference : Breaking dimensions and resolutions of forest remote sensing data, Krakow, September 15-16, 2016 ; book of abstracts. Krakow: University of Agriculture in Krakow, Faculty of Forestry, p 88

  84. 83

    Kraft M, Schittenhelm S, Kottmann L, Schroetter S, Langkamp T, Neeland H, Matschiner K (2016) Fernerkundliche Beurteilung der Trocken- und Hitzetoleranz von Weizengenotypen auf Selektionsstandorten mit begleitenden Untersuchungen zu Durchwurzelungstiefe, Wurzelmorphologie und Wasserhaushalt (Phaenokopter). In: Innovationstage 2016 : Die Zukunft ins Jetzt holen ; 15. bis 26. Oktober in Bonn. Bonn: Bundesanstalt für Landwirtschaft und Ernährung, pp 301-305

  85. 84

    Klatt S, Breidenbach J, Astrup R (2016) Measuring tree diameters with close-range photogrammetry. In: Wezyk P, Zieba K (eds) 3rd EARSel workshop SIG on Forestry and Young Scientist Days on Forestry Conference : Breaking dimensions and resolutions of forest remote sensing data, Krakow, September 15-16, 2016 ; book of abstracts. Krakow: University of Agriculture in Krakow, Faculty of Forestry, p 110

  86. 85

    Vohland M, Harbich M, Ludwig M, Emmerling C, Thiele-Bruhn S (2016) Quantification of soil variables in a heterogeneous soil region with VIS-NIR-SWIR data using different statistical sampling and modeling strategies. IEEE J Selected Topics Appl Earth Observ Remote Sens 9(9):4011-4021, DOI:10.1109/JSTARS.2016.2572879

  87. 86

    Vicca S, Balzarolo M, Filella I, Granier A, Herbst M, Knohl A, Longdoz B, Mund M, Nagy Z, Pintér K, Rambal S, Verbesselt J, Verger A, Zeileis A, Zhang C, Penuelas J (2016) Remotely-sensed detection of effects of extreme droughts on gross primary production. Sci Rep 6:28269, DOI:10.1038/srep28269

    https://literatur.thuenen.de/digbib_extern/dn056881.pdf

  88. 87

    Schneider J, Jungkunst HF, Wolf U, Schreiber P, Gazovic M, Miglovets M, Mikhaylov O, Grunwald D, Erasmi S, Wilmking M, Kutzbach L (2016) Russian boreal peatlands dominate the natural European methane budget. Environ Res Lett 11(1):14004, DOI:10.1088/1748-9326/11/1/014004

    https://literatur.thuenen.de/digbib_extern/dn061770.pdf

  89. 88

    Wang S, Pan M, Mu Q, Shi X, Mao J, Brümmer C, Jassal RS, Krishnan P, Li J, Black TA (2015) Comparing evapotranspiration from eddy covariance measurements, water budgets, remote sensing, and land surface models over Canada. J Hydrometeorol 16(4):1540-1560, DOI:10.1175/JHM-D-14-0189.1

  90. 89

    Neeland H, Kraft M (2014) Construction and measurement technology of the ThünoCopter for contactless inspection of crop canopies: first measurements with a low-cost image analysing system. Kölner Geogr Arb 94:67-73, DOI:10.5880/TR32DB.KGA94.2

    https://literatur.thuenen.de/digbib_extern/dn052987.pdf

  91. 90

    Gocht A, Röder N (2014) Using a Bayesian estimator to combine information from a cluster analysis and remote sensing data to estimate high-resolution data for agricultural production in Germany. Int J Geogr Inf Sci 28(9):1744-1764, doi:10.1080/13658816.2014.897348

  92. 91

    Marshall M, Tu K, Funk CC, Michaelsen J, Williams P, Williams CA, Ardö J, Boucher M, Cappelaere B, De Grandcourt A, Nickless A, Nouvellon Y, Scholes RJ, Kutsch WL (2013) Improving operational land surface model canopy evapotranspiration in Africa using a direct remote sensing approach. Hydrol Earth Syst Sci 17(3):1089-1091, DOI:10.5194/hess-17-1079-2013

    https://literatur.thuenen.de/digbib_extern/dn051987.pdf

  93. 92

    Baldauf T (2013) Monitoring reduced emissions from deforestation and forest degradation (REDD+) : capabilities of high-resolution active remote sensing . Hamburg: Universität, 152 p, Hamburg, Univ, Diss

  94. 93

    Cui J, Xiao X, Merbold L, Arneth A, Veenendaal EM, Kutsch WL (2013) Phenology and gross primary production of two dominant savanna woodland ecosystems in Southern Africa. Remote Sens Environ 135:189-201, doi:10.1016/j.rse.2013.03.033

  95. 94

    Kuntz S, Poncet F von, Baldauf T, Plugge D, Kenter B, Köhl M (2011) A multi-stage inventory scheme for REDD inventories in tropical countries. In: Proceedings of 34th International Symposium for Remote Sensing of the Environment. pp 1-4

  96. 95

    Sjöström M, Ardö J, Arneth A, Boulain N, Cappelaere B, Eklundh L, De Grandcourt A, Kutsch WL, Merbold L, Nouvellon Y, Scholes RJ, Schubert P, Seaquist J, Veenendaal EM (2011) Exploring the potential of MODISEVI for modeling gross primary production across African ecosystems. Remote Sens Environ 115(4):1081-1089, doi:10.1016/j.rse.2010.12.013

  97. 96

    Stümer W (2010) Auswertung von Fernerkundungsdaten mit Self Organizing Maps für die Herleitung von Kohlenstoffkarten. Publ Dt Gesellsch Photogrammetrie Fernerkundung Geoinf 19:175-186

  98. 97

    Plugge D, Baldauf T, Ratsimba HR, Rajoelison G, Köhl M (2010) Combined biomass inventory in the scope of REDD (Reducing Emissions from Deforestation and Forest Degradation) [online]. Madagascar Conserv Dev 5(1):23-34, zu finden in <http://journalmcd.com/index.php/mcd/article/view/168/129> [zitiert am 24.06.2010]

  99. 98

    Iost A, Oehmichen K, Riedel T (2010) Evaluierung satellitengestützter Stichprobenkonzepte für die Bundeswaldinventur. Berlin: Rhombos-Verl, 236 p

  100. 99

    Köhl M (2010) Resource assessment techniques for continuous cover forests systems. Manag Forest Ecosyst 4:13-26

  101. 100

    Oehmichen K (2010) Satellitengestützte Waldflächenkartierung für die deutsche Treibhausgasberichterstattung. Publ Dt Gesellsch Photogrammetrie Fernerkundung Geoinf 19:195-202

  102. 101

    Granke O, Kenter B, Kriebitzsch W-U, Köhl M, Köhler R, Olschofsky K (2009) Biodiversity assessment in forests - from genetic diversity to landscape diversity. iForest 1:1-3, DOI:10.3832/ifor0474-002

  103. 102

    Montzka C, Canty M, Kreins P, Kunkel R, Menz G, Vereecken H, Wendland F (2008) Multispectral remotely sensed data in modelling the annual variability of nitrate concentrations in the leachate. Environ Modelling Software 23(8):1070-1081, DOI:10.1016/j.envsoft.2007.11.010

  104. 103

    Oehmichen K, Köhl M (2008) Verfahrensvorschlag zur satellitengestützten Waldflächenkartierung für die Bundeswaldinventur. Photogrammetrie Fernerkund Geoinf(6):499-507

  105. 104

    Köhl M, Baldauf T, Plugge D (2007) Einsatz von Fernerkundung zur Erfassung der Entwaldung : Pilotstudie Madagaskar: Vermiedene Entwaldung als Klimaschutzoption. AFZ Der Wald 62(23):1262-1263

    https://literatur.thuenen.de/digbib_extern/dk039928.pdf

  106. 105

    Kleinschmit B, Förster M, Frick A, Oehmichen K (2007) QuickBird Data - experiences with ordering, quality and pan sharpening. Photogrammetrie Fernerkund Geoinf(2):73-83

  107. 106

    Oehmichen K (2007) Satellitengestützte Waldflächenkartierung für die Bundeswaldinventur. Hamburg: Univ, 112 p, Hamburg, Univ, Fakultät für Mathematik, Informatik und Naturwissenschaften, Diss, 2007

  108. 107

    Köhl M, Magnussen S, Marchetti M (2006) Sampling methods, remote sensing and GIS : multiresource forest inventory. Heidelberg; Berlin: Springer, 403 p

  109. 108

    Stümer W, Köhl M (2005) Kombination von terrestrischen Aufnahmen und Fernerkundungsdaten mit Hilfe der k-Nächste-Nachbar-Methode zur Klassifizierung und Kartierung von Wäldern. Photogrammetrie Fernerkund Geoinf(1):23-36

  110. 109

    Kraft M, Brandes F (1998) Erste Erfahrungen bei der optischen Messung des Stickstoffversorgungsgrades von Raps- und Grünlandbeständen. KTBL Arbeitspap 250:61-67

  111. 110

    Kraft M (1990) Fernerkundung in der Landwirtschaft : Möglichkeiten und Probleme bei der Verwendung von Satellitendaten. KTBL Arbeitspap 145:101-108

    Scroll to top