Skip to main content
[Translate to English:]
[Translate to English:]
Institute of

FG Forest Genetics

Project

Breeding new energy poplar varieties by biotechnology



ZÜEND: Breeding new energy poplar varieties for Germany

In comparison to other energy crops, short rotation coppice (SRC) of poplar trees show improved energy, environmental and economic balance. However, there is a high demand for poplar breeding of varieties that are adapted to this form of cultivation.

Background and Objective

Based on one with molecular markers already well-characterized line of poplar clones and having regard to the difficulties in the controlled intersections is the innovative technology of somatic hybridization be used to increase the genetic diversity through new combinations of poplar lines from the various sections and optimized energy poplars to grow.

Approach

Parallel to the development of new techniques in poplar breeding, molecular markers for important breeding characteristics as well as hybrid analysis are developed. One focus of the work will be on the combination of high juvenile growth ability and resistance to poplar leaf rust out.

Involved external Thünen-Partners

Funding Body

  • Fachagentur Nachwachsende Rohstoffe e.V. (FNR)
    (national, öffentlich)

Duration

6.2011 - 5.2014

More Information

Funding program: FNR
Project status: finished

Publications

  1. 0

    Fladung M (2022) Xylem-specific Overexpression of the GIBBERELLIN ACID 20 OXIDASE Gene (GA20-OXIDASE) from Pine in Hybrid Poplar (Populus tremula L. × P. alba L.) Revealed Reliable Increase in Growth and Biomass Production Just in a Single-copy-line. Gesunde Pflanzen 74:239-248, DOI:10.1007/s10343-022-00653-y

    https://literatur.thuenen.de/digbib_extern/dn064867.pdf

  2. 1

    Fladung M (2021) Targeted CRISPR/Cas9-based knock-out of the rice orthologs TILLER ANGLE CONTROL 1 (TAC1) in poplar induces erect leaf habit and shoot growth. Forests 12(12):1615, DOI:10.3390/f12121615

    https://literatur.thuenen.de/digbib_extern/dn064445.pdf

  3. 2

    Fladung M, Ewald D (2018) Biotechnologie schnellwachsender Baumarten. In: Veste M, Böhm C (eds) Agrarholz - Schnellwachsende Bäume in der Landwirtschaft : Biologie - Ökologie - Management. Wiesbaden: Springer Spektrum, pp 147-168, DOI:10.1007/978-3-662-49931-3_6

  4. 3

    Schröder H, Kersten B, Fladung M (2018) Chloroplasten- und Kernmarker-Sets zur Unterscheidung von bis zu 19 Pappelarten (Genus Populus). In: Ammer C, Bredemeier M, Arnim G von (eds) FowiTa : Forstwissenschaftliche Tagung 2018 Göttingen ; Programm & Abstracts ; 24. bis 26. September 2018. Göttingen: Univ Göttingen, Fakultät für Forstwissenschaften und Waldökologie, p 420

  5. 4

    Bartsch D, Bendiek J, Bräuning A, Ehlers U, Dagand E, Duensing N, Fladung M, Franz C, Groeneveld E, Grohmann L, Habermann D, Hartung F, Keilwagen J, Leggewie G, Matthies A, Middelhoff U, Niemann H, Petersen B, Scheepers A, Tebbe CC, et al (2018) Wissenschaftlicher Bericht zu den neuen Techniken in der Pflanzenzüchtung und der Tierzucht und ihren Verwendungen im Bereich der Ernährung und Landwirtschaft : überarbeitete Fassung vom 23.02.2018 [online]. BVL; MRI; TI; BfR; FLI, 83 p, zu finden in <https://www.bmel.de/SharedDocs/Downloads/Landwirtschaft/Pflanze/GrueneGentechnik/Bericht_Neue_Zuechtungstechniken.pdf> [zitiert am 20.03.2018]

    https://literatur.thuenen.de/digbib_extern/dn059758.pdf

  6. 5

    Fladung M (2017) Debate is failing Europe's geneticists. Nature 544:35

  7. 6

    Pilate G, Allona I, Boerjan W, Dejardin A, Fladung M, Gallardo F, Häggman H, Jansson S, van Acker R, Halpin C (2016) Lessons from 25 years of GM tree field trials in Europe and prospects for the future. Forestry Sci 82:67-100, DOI:10.1007/978-94-017-7531-1_4

  8. 7

    Galovic V, Orlovic S, Fladung M (2015) Characterization of two poplar homologs of the GRAS/SCL gene, which encodes a transcription factor putatively associated with salt tolerance. iForest 8:780-785, DOI:10.3832/ifor1330-008

  9. 8

    Fladung M (2015) Pflanzenbiotechnologie 3.0. Gesunde Pflanzen 67(2):51-58, DOI:10.1007/s10343-015-0340-6

  10. 9

    Ahuja MR, Fladung M (2014) Integration and inheritance of transgenes in crop plants and trees. Tree Genetics Genomes 10(4):779-790, DOI:10.1007/s11295-014-0724-2

  11. 10

    Fladung M (2013) Efficient in vitro plantlet regeneration in Populus euphrata Oliver [online]. Afr J Biotechnol 12(8):826-832, zu finden in <http://www.academicjournals.org/journal/AJB/article-full-text-pdf/81F997626646> [zitiert am 12.11.2013]

  12. 11

    Brügmann T, Fladung M (2013) Potentials and limitations of the cross-species transfer of nuclear microsatellite marker in six species belonging to three sections of the genus PopulusL.. Tree Genetics Genomes 9(6):1413-1421, DOI:10.1007/s11295-013-0647-3

  13. 12

    Schröder H, Wühlisch G von, Fladung M (2012) Auch bei Pappeln ist nicht immer drin, was drauf steht. AFZ Der Wald 67(5):13-15

    https://literatur.thuenen.de/digbib_extern/dn050075.pdf

  14. 13

    Schröder H, Höltken AM, Fladung M (2012) Differentiation of Populus species using chloroplast single nucleotide polymorphism (SNP) markers – essential for comprehensible and reliable poplar breeding. Plant Biol 14(2):374-381, doi:10.1111/j.1438-8677.2011.00502.x

  15. 14

    Fladung M (2012) Entwicklung und Nutzung neuartiger genetischer Technologien zur Erhöhung von Biomasseerträgen in Populus spec. (PopMass). Beitr Nordwestdt Forstl Versuchsanst 8:

  16. 15

    Knoop M von, Fladung M (2012) Stadtbäume als Ergänzung des Biomasseaufkommens? : eine Herausforderung für die Gentechnik. AFZ Der Wald 67(12):16-19

    https://literatur.thuenen.de/digbib_extern/dn050270.pdf

    Scroll to top