

# ► Project brief

Thünen Institute of Forestry

2026/02a

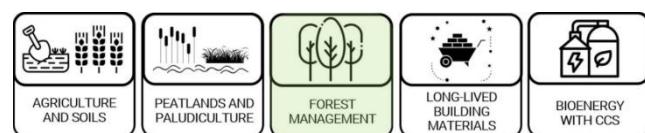
## Forests as elements of bio-based carbon removal strategies

Pierre Herrmann<sup>1</sup> & Peter Elsasser<sup>1</sup>

- **25 fact sheets on the removal potential of forests, farmland, and peatlands, of bioenergy production with CO<sub>2</sub> capture and storage, and of bio-based building materials**
- **Forestry measures need time to develop their full removal potential, but they are long-lasting, cost-effective, and have many positive environmental impacts**

### Background and objectives

Carbon dioxide (CO<sub>2</sub>) removal using biomass and soils is a central element of German climate policy to achieve the goal of greenhouse gas neutrality by 2045. Bio-based CO<sub>2</sub> removal processes can be implemented in various ways. In a large-scale research consortium, we investigated the regional feasibility of bio-based CO<sub>2</sub> removal methods and set up an information portal for politics, industry, agriculture, and forestry.


This high variability in costs suggests that the more cost-effective concepts should be implemented first. However, when developing implementation strategies, aspects such as economic efficiency, available resource base, and environmental impacts, including social and political implications for Germany, must be taken into account. All of the concepts examined could be implemented on a scale that would make a significant contribution to Germany's climate neutrality goal.

### Approach

We contribute to the overall project with suitable forestry concepts, focusing primarily on afforestation and timber harvesting restrictions. These are recorded in fact sheets, which describe the emissions balance over time, the effects on yield, and on the value of environmental services.

### Conclusions

The fact sheets we have developed provide a straightforward source of information. They offer stakeholders from politics, industry, agriculture, and forestry practical guidance on suitable bio-based CO<sub>2</sub> removal options and their respective advantages and disadvantages.



### Results

A comparison of the various bio-based concepts for CO<sub>2</sub> removal in agriculture and forestry, in building materials, and in bioenergy production with CO<sub>2</sub> capture and storage (BECCS) shows that the temporal dynamics of these concepts differ significantly up to 2045. Concepts for CO<sub>2</sub> sequestration from the atmosphere that involve increasing natural sinks are characterized by gradually rising rates, followed by saturation and possibly a decline after a few decades. Forestry measures only become fully effective after a certain lead time, but have a very long-term impact; in contrast, construction projects and bioenergy plants have constant annual removal rates during operation, which then drop to zero. The cost of removing one ton of CO<sub>2</sub> from the atmosphere ranges from €8 to €520 per ton of CO<sub>2</sub>, which is due to large differences between the concepts in terms of both investment and operating costs.

### Further information

#### Contact

<sup>1</sup>Thünen Institute of Forestry  
[peter.elsasser@thuenen.de](mailto:peter.elsasser@thuenen.de)  
[www.thuenen.de/wf](http://www.thuenen.de/wf)

#### Run time

1.2022-6.2025  
**Project-ID**  
 2298

#### Publications

[Wollnik et al.](#), Dynamics of bio-based Carbon Dioxide Removal in Germany. *Scientific Reports* 2024.  
[Wollnik et al.](#), Factsheets for bio-based carbon dioxide removal options in Germany. *Open Agrar* 2025 (2.ed.).

#### Funding



Federal Ministry  
 of Research, Technology  
 and Space