Identification of Candidate Genes For Use in Molecular Breeding – A Case Study With the Norway Spruce Defensin-like Gene, Spi 1

By M. Elfstrand1,6), C. G. Fossdal2), G. Svedemarke3), D. Clapham1), O. Olsson4), F. Sitbon5), P. Sharma2), A. Lönneborg2) and S. von Arnold1)

(Received 23th October 2000)

Abstract

In this study we have investigated whether the defensin-like gene spi 1, isolated from Norway spruce, contributes to quantitative disease resistance and is a suitable candidate for utilization in Norway spruce breeding programmes. The following questions have been raised: (1) Can the putative defense gene, spi 1, improve the defense towards microbial pathogens in a model plant species, tobacco? (2) Is it possible to produce transgenic plants of Norway spruce that overexpress the gene of interest. This approach can be applied to several herbaceous species (Birch, 1997). Conifers are outbred and strongly heterozygous, and the traits bred for are quantitative, continuously varying in the population. At least some of the quantitative traits are regulated by major genes, which can be determined by the association of a locus (quantitative trait locus, QTL) with the trait in a segregating population in linkage disequilibrium. In some cases, candidate major genes putatively regulating a quantitative trait have been identified that map close to a known QTL

Conifers are outbred and strongly heterozygous, and the traits bred for are quantitative, continuously varying in the population. At least some of the quantitative traits are regulated by major genes, which can be determined by the association of a locus (quantitative trait locus, QTL) with the trait in a segregating population in linkage disequilibrium. In some cases, candidate major genes putatively regulating a quantitative trait have been identified that map close to a known QTL associated with the trait. An example in conifers is the cad-n1 locus of loblolly pine, which alters the composition of the lignin and maps at or close to a QTL regulating growth (Wu et al., 1999). For quantitative disease resistance, candidate gene analysis has been applied successfully to wheat (e.g. Faris et al., 1999). As a complement to such mapping studies, the importance of specific genes can be tested in transgenic plants that over- or underexpress the gene of interest. This approach

Keywords: Molecular breeding, Norway spruce, plant defensin, transformation.

1) Department of Forest Genetics, Swedish University of Agricultural Sciences, P.O. Box 7027, S-750 07 Uppsala, Sweden.
2) Norwegian Forest Research Institute (NISK), Høgskoleveien 12, N-1432 As-NLH, Norway.
3) Forest Research Institute of Sweden, Uppsala Science Park, S-751 83 Uppsala, Sweden.
4) Forest Research Institute, Sweden, University of Agriculture Sciences, P.O. Box 7088, S-750 07 Uppsala, Sweden.
5) Author of correspondence
has not yet to our knowledge been tested in conifers. We have now reached the stage where somatic embryogenesis can be integrated into Norway spruce breeding programmes (HÖGBERG et al., 1998). Furthermore we can routinely produce transgenic plants of Norway spruce (CLAPHAM et al., 2000; WALTERS et al., 1999) which stably express the transgene (BRUKHIN et al., 2000). In this work we show that transgenic plants can be a useful tool for identifying valuable genes in conifers.

Root pathogens cause serious damage to forest trees. One of the major pathogens on Norway spruce is Heterobasidion annosum, causing root and butt rot. H. annosum is one of the very few fungal pathogens that is able to infect living conifer roots and seedling-roots infected with pathogen induced 1), encoding a plant defensin-like protein (SWEDJEMARK and STENLID, 1995). However there is a significant variation in fungal growth among genotypes (LÖNNEBORG, 1996). The amount of SPI 1 protein also increases significantly within 24 h after infection supports the hypothesis that the infecting pathogens can actively suppress the synthesis of a plant defensin-like gene defense responses (DIXON and LAMB, 1990). The consistent drop in the SPI content (FOSSDAL, 1999). It has previously been shown that within 12 hours of infection with H. annosum, after which there is a sharp drop in the SPI content (HÖGBERG et al., 1998), and was obtained in 1985 from a living Norway spruce in southern Sweden (STENLID, 1987). Inocula were prepared by growing the fungus on 5 mm x 5 mm spruce dowels placed on agar medium for four weeks in darkness, at 20°C.

Fungal and bacterial material

The Heterobasidion annosum isolate Rb 175 used in the inoculation experiment is of the S-intersterility-group of H. annosum and was obtained in 1985 from a living Norway spruce in southern Sweden (STENLID, 1987). Inocula were prepared by growing the fungus on 5 mm x 5 mm spruce dowels placed on agar medium for four weeks in darkness, at 20°C.

Plasmid construction

A 517 bp fragment carrying the entire spi1 coding region plus 45 bp upstream and 210 bp downstream sequence was isolated. The ends of the fragment were filled by Klenow polymerase and a 10 nt BamHI linker, 5' CCGGATCCGG-3', was ligated to both ends. After ligation, the fragment was re-cleaved with BamHI and cloned into the binary plant expression vector pPCV702 (KONCZ et al., 1994; WALDEN et al., 1990). This step linked the spi1 fragment downstream to a minimal 460 bp cauliflower mosaic virus (CaMV) 35S promoter fragment: tobacco mosaic virus (TMV) coat protein leader sequence. The strength of the promoter was thereafter increased by linking 4 tandem copies of a 518 bp fragment carrying the CaMV 35S enhancer sequence. The resulting plasmid was denoted p140S: Spi1.km, and was used to transform tobacco plants.

To generate a suitable plasmid for transformation of Norway spruce, the enhanced 35S::Spi1 fragment was excised as a HindIII fragment from p140S: Spi1.km and cloned into the HindIII site of plasmid pAH 25 (CHRISTENSEN and QUAIL, 1996), after removal of the ubi::uidA sequence in this plasmid. The resulting plasmid, which also carries the bar gene (FROMM et al., 1990), giving resistance to the herbicide Basta, was denoted p140S: Spi1.bar and was used for transformation of Norway spruce cells.

Transformation of tobacco and regeneration of plants

In vitro grown tobacco and regeneration plants were transformed with p140S: Spi1.km using an Agrobacterium tumefaciens mediated leaf disc transformation protocol. Fifteen primary transformants were transferred to the greenhouse and seeds were collected after selfing. The seeds were surface-sterilised and sown on Murashige-Skoog medium (ICN) supplemented with 100 µg ml⁻¹ kanamycin, after which resistant seedlings were transferred to Murashige-Skoog medium without kanamycin and were used in E. carotovora inoculation experiments.

Transformation of Norway spruce and regeneration of plants

Embryogenic cells of Norway spruce (genotype 95:8:8:22) were transformed with p140S: Spi1.bar using a custom-made particle inflow gun as described in CLAPHAM et al. (2000). Transformed cells were selected on proliferation medium containing Basta at 1 mg l⁻¹, corresponding to phosphinothricin at 0.2 mg l⁻¹. Resistant colonies appeared 2 to 6 months after the...
bom bardment. The colonies were transferred to proliferation medium supplemented with 450 mg m⁻¹ of glutamine.

Somatic embryos from the transformed sublines were matured essentially as described by ROZHKO V and VON ARNOLD (1998). Proliferating embryogenic cultures were suspended in liquid medium without growth regulators and the cultures were plated on filter papers placed on BMS-SI medium (Krogstrup, 1986) containing 90 mM sucrose, 24 µM ABA, 7.5% PEG and 450 mg l⁻¹ glutamine and solidified with 3.5 g l⁻¹ gelrite. Mature embryos were partially desiccated under high humidity conditions and the partially desiccated embryos were transferred to germination medium. After germination the somatic embryo plants were transferred to liquid medium (Ing éstad, 1979) in glass tubes. Plants that grew well after one month were grown on in mineral wool. The plants were kept under a regime of 24 hours light (240 µM m⁻² s⁻¹) and 20 °C.

RNA blot analysis

Total RNA was extracted from a pool of six tobacco seedlings per line, using the method described by LOGEMANN et al. (1987). Total RNA from shoots of individual 8 to 10 months old plants of Norway spruce was extracted according to CHANG et al. (1993).

For RNA blot analysis 15 µg of RNA was separated by gel electrophoresis under denaturing conditions and blotted to Hybond-N + nylon membrane (Amersham). The cleaved by Eco RI fragment of spi 1 with an approximate size of 300 bp, or a 600 bp bar fragment labelled with [³²P]-dCTP using the oligolabelling-kit (Amersham-Pharmacia, Uppsala, Sweden). Hybridization was performed overnight at 42 °C in 5 X SSC, 4 X Denhardt’s solution, 0.1% SDS, 40% formamide, 10% dextran sulphate and 100 µg ml⁻¹ denatured salmon sperm DNA. The membranes were washed in 2 X SSC, 0.1% SDS, 2 X 15 minutes at room temperature and in 0.2 X SSC, 0.1% SDS, 2 X 15 minutes at 37 °C and at higher temperatures when necessary.

DNA blot analysis

Total DNA from Norway spruce was isolated by the method of DOYLE et al. (1987) with the modifications described by ROWLAND et al. (1993), but with an extraction buffer containing 100 mM Tris-Cl, 25 mM EDTA, 2 M NaCl, 2% CTAB, 2% PVP and 2% β-mercaptoethanol. 16 µg of genomic DNA was cleaved by Eco RI and separated by gel electrophoresis and blotted to a Hybond-N⁺ nylon membrane (Amersham). The probe was the 600 bp bar gene fragment, as above. Hybridization was performed overnight in 5 X SSPE, 5 X Denhardt’s solution, 10% dextran sulphate and 500 µg ml⁻¹ denatured salmon sperm DNA at 65 °C. The membranes were washed under high stringency conditions, with the final wash at 65 °C in 0.1 X SSC, 0.1% SDS.

Protein extraction and immunoblot assay

A 12-mer peptide of the predicted mature SPI1 protein was used to generate polyclonal antibodies in a rabbit. The peptide was coupled to Keyhole limpet hemocyanin (KLH) carrier as described by HARLOW and LANE (1988). The antibodies recognized only one protein band from root extracts of Norway spruce. This protein band had an apparent size of 5kD, as expected for SPI1. The details of the procedure and the specificity of the antibodies are described in detail by FOSSDAL (1999).

Shoots from two to three randomly chosen 8 to10 months old Norway spruce plants per subline were snap frozen in liquid nitrogen and stored at −80 °C until use. The samples were boiled in 2X SDS-PAGE buffer with 0.2 M DTT for 10 minutes, undissolved material being removed by centrifugation. Samples were analysed by Tricine SDS-PAGE, as described in SCHÄGGER and VON JAGOW (1987) and SDS-PAGE gels were stained with Coomassie Brilliant Blue R 250 to check equal loading. Following SDS-PAGE the proteins were electroblotted onto a PVDF membrane (BioRad) for 4 hrs at 140 mA in a MINI-Protein blotter (BioRad). For the immunodetection the PVDF membrane was blocked with Blocking buffer (7% [w/v] nonfat dried milk, [pH 7.5] 0.1 M Tris, [pH 7.5] 0.15 M NaCl and 0.5% [w/v] Tween-20) for 30 minutes. The SPI1 protein specific antibodies were diluted 1:2000 and preincubated in Blocking buffer for 2 hours. Goat anti-rabbit alkaline phosphatase linked secondary antibodies (SIGMA) were used to visualize detection. The wash and the colour reaction, using NBT and BCIP as substrates, were performed according to the BioRad immunoblot assay kit protocol.

Inoculation of tobacco plants with Erwinia carotovora

Inoculation of tobacco with Erwinia carotovora was done essentially as described by NORMAN-SETTERBLAD and co-workers (NORMAN-SETTERBLAD et al., 2000). Three weeks old in vitro grown plants from five transgenic lines, as well as from an empty-vector control line, were inoculated with 15 µl of a 10 times dilution of the bacterial overnight culture (3 x 10⁸ CFU ml⁻¹). After the inoculation plants were kept under high humidity conditions to facilitate bacterial growth. Bacterial growth in planta was evaluated after 48 h by homogenising the inoculated plants in 10 ml of 10 mM MgSO₄ and plating serial dilutions onto L-agar plates. Each sample contained three plants and the number of viable bacteria (colony forming units, CFU) was then counted in six independent samples from each of the tested lines. The variation, represented by the SE, is typically relatively large in the method used, (ANDERSSON et al., 1999).

Infection of Norway spruce somatic embryo plants with Heterobasidion annosum

Somatic embryo plants at an age of 8 to 10 months were inoculated with H. annosum as described previously (SWEDEMARK and STENLID, 1995). A 5-mm circular wound, about 6 cm above the soil surface, was made by removing the phloem, using a sterilised cork-borer, and a H. annosum-infected spruce dowel was attached to the wound with parafilm.

After 34 days at 20 °C under constant light (240 µmol m⁻² s⁻¹) the plants were sampled for analysis of the H. annosum extension in the stem. Height and diameter of the stems were measured. Each stem was then consecutively cut into 5 mm thick disks which were immediately placed on moist filter-paper in a Petri-dish. The disks were examined for the presence of conidiophores on the surface ten days after sampling. Fungal growth in the sapwood was expressed in mm.

Results

Expression of spi 1 in tobacco plants

The hypothesis that tobacco plants expressing spi 1 allow less growth of pathogenic microorganisms was tested. The expression level of spi 1 in the lines was tested by northern analysis. No expression was found in the vector control, while the expression in the transgenic lines varied (Figure 1). Three-week-old in vitro grown plants of five p140S:Spi1.km transform ed tobacco lines and a vector control line were inoculated with E. carotovora (Figure 1). The average CFU for the lines presented in figure 1 are based on six individual samples per line. Each sample contained three plants. The group of transgenic lines permitted significantly less (p<0.05) bacterial growth than the control. Furthermore, the lines D-1, D-11 and D-12 had significantly lower CFU values than the vector control.
spi 1 in somatic embryo plants was up to 30 times higher than in the corresponding embryogenic culture. Furthermore, somatic embryo plants showed a considerable variation in spi 1 expression both within and among the genotypes. Accordingly, the expression level of spi 1 in shoots from 8 to 10 months old transgenic somatic embryo plants was higher than in embryogenic cultures (data not shown). There was a variation in the expression of spi 1, among plants from the same subline (Figure 2). This variation with a standard deviation of 20% to 30% of the mean, is what is expected for mRNA expression in untransformed or transformed plants. However, the plants derived from the untransformed control always showed lower levels of spi 1 mRNA than the transgenic sublines. Furthermore, a similar degree of variation in mRNA levels was found in the shoots of H. annosum-inoculated plants; but average mRNA levels were consistently higher in subline 4-4 than in the control.

Overexpression of spi 1 in somatic embryos and regenerated plants of Norway spruce

Embryogenic cell cultures of Norway spruce were transformed with pPCV1408:spi1.bar. Fourteen embryogenic sublines were recovered on selective medium containing Basta. Six fast growing sublines, i.e. sublines growing at a similar rate as the untransformed control, and expressing the bar gene, were analysed further (sublines 4-1.0, 4-1.1, 4-2, 4-3, 4-4 and 4-5). DNA blot hybridization revealed that 1 to 4 copies of the bar gene was present in the Norway spruce genome (data not shown). RNA blot hybridization with the spi 1 fragment hybridising with the spi 1 probe showed that there was only one clearly overexpressing subline, 4-5, showing up to 2.7 times the expression observed in non-transformed control. Furthermore, the variation in spi 1 expression was very small between the transformed sublines.

All lines produced normal mature embryos when given a maturation treatment. No significant differences in maturation frequency were observed. From each subline 80 mature embryos were first partly desiccated and thereafter germinated. Germination frequencies varied among the sublines. The lowest germination frequency was observed for the overexpressing subline 4-5 (50%). However, the germination frequency was also low for subline 4-2 (55%), which did not overexpress spi 1.

After germination the somatic embryo plants were transferred to liquid medium in glass tubes. Only the plantlets that displayed good growth, and had a white, actively growing root tip after one month of cultivation were potted.

The spi 1 expression in embryogenic cultures representing different genotypes was relatively low and the variation among different genotypes was small (data not shown). Expression of spi 1 in somatic embryo plants was up to 30 times higher than in the corresponding embryogenic culture. Furthermore, somatic embryo plants showed a considerable variation in spi 1 expression both within and among the genotypes. Accordingly, the expression level of spi 1 in shoots from 8 to 10 months old transgenic somatic embryo plants was higher than in embryogenic cultures (data not shown). There was a variation in the expression of spi 1, among plants from the same subline (Figure 2). This variation with a standard deviation of 20% to 30% of the mean, is what is expected for mRNA expression in untransformed or transformed plants. However, the plants derived from the untransformed control always showed lower levels of spi 1 mRNA than the transgenic sublines. Furthermore, a similar degree of variation in mRNA levels was found in the shoots of H. annosum-inoculated plants; but average mRNA levels were consistently higher in subline 4-4 than in the control.

Fig. 1. Growth of E. carotovora on tobacco plants expressing spi 1. Growth of E. carotovora on 35S:spi 1-transformed tobacco plants was determined 48 h after inoculation. The results are presented as the cumulative mean of six independent samples per line and is given as colony forming units (CFUs). A significant difference between the control and the group of transgenic lines (p<0.05) was found, using the MANN-WHITNEY test. Asterisks indicate that the lines were significantly different from the control (p<0.05). The experiment was repeated with a similar result. To determine if the tobacco lines were expressing spi 1, 10 µg of total RNA, extracted from a pool of six plants, was separated on a denaturing gel. The filters were probed with the spi 1 probe, and the autoradiograph was developed after 24h. A. Expression of spi 1, among plants from the same subline (Figure 2). This variation with a standard deviation of 20% to 30% of the mean, is what is expected for mRNA expression in untransformed or transformed plants. However, the plants derived from the untransformed control always showed lower levels of spi 1 mRNA than the transgenic sublines. Furthermore, a similar degree of variation in mRNA levels was found in the shoots of H. annosum-inoculated plants; but average mRNA levels were consistently higher in subline 4-4 than in the control.

Fig. 2. RNA blot analysis of the spi 1 mRNA levels in Norway spruce plants. Total RNA was extracted from shoots of 8-10 months old control and transformed plants. 15 µg of total RNA was loaded onto a denaturing gel and transferred to a nylon filter after separation. Lanes 1 and 2, plants of subline 4-4, lanes 3 and 4, plants of subline 4-1.1, lanes 5 and 6, plants of subline 4-4. A. Expression of spi 1. The filter was hybridised with the spi 1 probe, and the autoradiograph was developed after 24h. B. Ethidium bromide staining of ribosomal RNA.

The amount of SPI 1 in shoots-samples (from 2 to 3 plants) from 8 to 10 months old plants as determined by Western analysis was higher in plants from five out of the six sublines tested than in the untransformed control. As can be seen in figure 3, plants from the sublines 4-1.0, 4-1.1, 4-2, 4-3 and 4-5 displayed an increased level of SPI 1. The levels were so high in these sublines that it was not possible to detect any SPI 1 protein in plants from the control and from subline 4-3 on the same filter, but increasing the developing time showed that both the control and subline 4-3 contained SPI 1.

Infection of plants of Norway spruce with Heterobasidion annosum

Plants at a height of at least 15 cm were infected with H. annosum through stem inoculations. Plants regenerated from the control, 4-1.0, 4-1.1, 4-3 and 4-4 were used. H. annosum grew significantly less (p<0.001) in the sapwood of plants from subline 4-4 than in the controls (Table 1). The growth of H. annosum in plants from the other tested sublines did not differ
transformed with susceptibility to Heterobasidion annosum al., 1995).

The untransformed control plants as well as plants from subline 4-3 do produce SPI 1, but in such low quantities that it can not be detected on the same filter as subline 4-4 and 4-5.

Significantly from the control. The SPI 1 content was higher in plants from all sublines, except 4-3, than in the control plants. However, the SPI 1 content was 2 to 3 times higher in plants from subline 4-4 than in plants from the other transgenic sublines (Figure 3).

Discussion

Tobacco plants expressing spi 1 permits less growth of Erwinia carotovora

To test if SPI 1 possesses antimicrobial activity, transgenic tobacco plants were generated, and inoculated with E. carotovora. Tobacco plants expressing spi 1 permitted less bacterial growth than control plants did when inoculated with E. carotovora (Figure 1). This suggests that spi 1, which has high similarity to plant defensins (SHARMA and LÖNNEBORG, 1996), encodes a protein with antimicrobial activity. The results are in accordance with results on tobacco transformed with Rs-AFP 2, a cDNA clone encoding a plant defensin from radish. The expression of Re-AFP 2 caused smaller lesions to develop on the leaves when infected with Alternaria longipes (TERRAS et al., 1995).

Overexpression of spi1 in Norway spruce can decrease susceptibility to Heterobasidion annosum

More than half of all established sublines (8 of 14) putatively transformed with spi 1 stopped proliferating after 9 to 12 weeks of culture. In contrast, a previous study using reporter genes showed a high yield of sublines after selection on Basta, and once established on proliferation medium essentially all 76 confirmed transgenic sublines continued to proliferate (CLAPHAM et al., 2000). This indicates that the expression of spi 1 might affect proliferation of embryogenic cell cultures negatively.

It has been shown that defensins are non-toxic to cells of angiosperms (HARRISON et al., 1997; MARCUS et al., 1997). In angiosperms defensins are present in the seeds as well as in the plants. SPI 1 is not present, in detectable amounts using antibodies, in seeds of Norway spruce (FOSSDAL, 1999) and the expression is also very low in embryogenic cultures. We suggest that during these stages elevated levels of the SPI 1 protein have detrimental effects. This is strengthened by the fact that no negative effect of SPI 1 was observed during later stages in Norway spruce. Moreover, other pathogen-induced genes such as chitinase genes (COLLINSS et al., 1998), have been shown to affect embryogenesis. If this is true also for spi 1, this could illustrate a problem in using the transgene approach to study resistance genes, namely that the regeneration step can be influenced negatively. This problem could be overcome by using inducible promoters which are not expressed during the critical developmental stages, or a promoter that can be repressed during the tissue culture step. However the enhanced 35S promoter was chosen in this study because the 35S promoter is giving an global expression in most plant species tested, and the enhanced 35S promoter has shown transient expression after particle bombardment of stem and needles of Larix ssp. (M. GATINEAU and D. CLAPHAM, unpublished observations).

Previous studies have indicated that SPI 1 is involved in the active host response to invading pathogens (FOSSDAL, 1999). In this work we have shown that transgenic Norway spruce plants with a highly increased content of SPI 1 are less susceptible to H. annosum. Previously it has been shown that one transgenic tobacco line expressing the RS-AFP 2 at high levels had increased disease tolerance when challenged with A. longipes (TERRAS et al., 1995). Suggesting that production of RS-AFP2 must reach a threshold level in the plants before they can display an increased disease tolerance. Similarly potato plants expressing the defensin aFP over the threshold level 1 p.p.m. displayed resistance to Verticillium dahliae (GAO et al., 2000). This could be the case for spi 1-transformed plants as

<table>
<thead>
<tr>
<th>Table 1. – Growth of H. annosum in transgenic plants.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two infection experiments were carried out. In the first experiment plants from the sublines 4-1.0 and 4-3 as well as from the untransformed control were infected. In the second experiment plants from the sublines 4-4 and 4-1.1 and from untransformed control were tested. The plants were inoculated with H. annosum by making a 5-mm circular wound, to which a H. annosum-infected spruce dowel was attached with parafilm. Fungal growth in the sapwood was measured 34 days after the inoculation with H. annosum. Each stem was consecutively cut into 5 mm thick disks which were placed on moist filter paper in a Petri-dish. The disks were examined for the presence of conidiophores on the surface ten days after sampling. The fungal growth is presented as a cumulative mean. The data for each experiment were analysed separately, using the MANN-WHITNEY U-test. There was a significant reduction (p <0.01) in fungal growth in plants regenerated from subline 4-4. Asterisks indicates the degree of significance.</td>
</tr>
<tr>
<td>Subline</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>control</td>
</tr>
<tr>
<td>4-1.0</td>
</tr>
<tr>
<td>4-3</td>
</tr>
</tbody>
</table>
well, since plants from subline 4-4 that displayed the highest amount of SPI 1 on Western analysis also permitted less growth of *H. annosum*. In contrast, a moderate increase in SPI 1 level, as in the sublines 4-1.1 and 4-1.0, did not reduce the susceptibility to fungal growth in the sapwood. The method developed for studying variation in fungal growth among genotypes is based on an average from several cuttings per genotype (SWEDEMAK and STENLID, 1996). Due to the large variation in expression of *spi 1* among plants from the same subline large experimental series have to be run for estimating the threshold level of SPI 1 for decreasing the susceptibility for *H. annosum*.

Transgenic plants can be a useful tool for identifying valuable genes in conifers

Our long-term goal is to make it possible to use molecular breeding in conifers. The basic requirements are fulfilled for Norway spruce. (1) We have a well developed breeding programme (KARLSSON and ROSVALL, 1993). (2) Somatic embryos of Norway spruce can be integrated into the breeding programme (HÖGBERG et al., 1998). (3) Transgenic Norway spruce plants stably expressing the transgene can be produced routinely (BRUKHIN et al., 2000). (4) Several genes of interest for breeding have been isolated from Norway spruce.

All genotypes of Norway spruce tested up to now have been sensitive to *H. annosum* infection. This justified turning to molecular methods. Our result here show that *spi 1* is a candidate gene to include in a molecular breeding programme for Norway spruce aimed at increasing resistance to *H. annosum*. Scandinavia's most serious forest tree pathogen. One approach is to screen naturally occurring or conventionally bred genotypes for high levels of *spi 1* expression. Another is to produce transgenic plants overexpressing the gene.

In conclusion, we have shown that a putative defense gene, *spi 1*, increases pathogen resistance in both heterologous and homologous systems. By expressing *spi 1* in tobacco plants it was possible to show that the gene product has an antimicrobial activity. Despite the fact that it was difficult to maintain *spi 1*-transgenic sublines of Norway spruce in culture, we were able to show that plants with a high content of SPI 1 were less susceptible to pathogen infection.

Acknowledgement

We wish to thank ANETTE SVILAN and TORBORG JANSSEN for skilful technical assistance. We also wish to thank Dr. CECILIA NORMAN-SETTERBLAD for providing us with *Erwinia carotovora*. This work was financed by the Swedish council of Agricultural and Forestry research and by the Scandinavian Forest Research committee.

References

Stability and Seed Movement for Loblolly Pine in the Western Gulf Region

By J. L. YEISER1), W. LOWE2), and J. P. VAN BUIJTENEN3)

(Received 30th October 2000)

Summary
Fifteen test plantings of loblolly pine (Pinus taeda L.) were established throughout the Western Gulf region to assess genotype by environment (G X E) interactions and to establish seed movement guidelines. Open-pollinated families from five selected trees plus a checklot from each of four seed zones were planted at each location. Seed zones tested were southeastern Texas, southern Louisiana, northern Louisiana and southern Arkansas, all in the USA.

Heterogeneity of regressions was significant for height and volume at age five and for volume at age 10. Data suggest that G X E interactions could be managed by stratifying environments. Significant concurrence was detected for volume at ages 5 and 10 indicating a significant portion of G X E interaction was due to changes in family rank. Family differences were significant at ages 5 through 15.

Regression estimates of slope and standard deviation for volume through age 10, indicated northern Louisiana and southeastern Texas families were intermediate in stability while southern Arkansas and southern Louisiana families were equally unstable. Families from southern Arkansas were least responsive to changes in site quality while those from southern Louisiana were most responsive. At age 15, northern Louisiana and southeastern Texas families remained intermediate in stability but southern Arkansas families exhibited increased responsiveness and southern Louisiana families showed decreased responsiveness to site quality. All zones exhibited a linear trend with respect to site quality. Perhaps greater drought tolerance of southern Arkansas families enabled them to continue growing in dense stands where competition for water could be great. The rapid early growth and reduced subsequent growth of southern Louisiana families may highlight a consequence of seed movement without timely regulation of stand density.

Ecovalences and directional responses were large and negative if seed movement exceeded 125 miles north or south of origin. Ecovalences and coefficients of genetic prediction suggested coastal families should not be planted on poor sites. Favorable performances were observed for families planted in regions requiring specific adaptability often along their latitude of origin or areas of higher moisture. Local material showed adaptiveness to local planting conditions.

Key words: Pinus taeda, genotype x environment interaction, plant stability, stability parameters, seed movement.

Introduction
The Western Gulf Region of the southern United States includes the states of Mississippi, Louisiana, Texas, Arkansas and Oklahoma. These states vary widely in weather and soils and resultantly, in site productivity. State and federal agencies and private industry within the Western Gulf Region are planting genetically improved seedlings on diverse sites across large geographical regions. Realization of a consistent and predictable performance from superior seed depends on their use on appropriate sites. An assessment of stability and genotype by environment (G X E) interaction is fundamental to the development of a sound seed movement policy.