Ecological Properties of Pinus nigra ssp. pallasiana var. șeneriana

By E. YÜCEL¹)

(Received 7th August 2000)

Abstract

In this study, the ecological properties of *Pinus nigra* Arn. ssp. *pallasiana* (Lam.) Holmboe var. *seneriana* (Saatcioglu) Yaltirik, one of the endemic plants in Turkey, has been studied. To determine the biological characters, needle, cone and seed morphology of the plant were used as main characters. Bioclimate, soil, dead layer characters and floristic composition of the distribution area were used to determine the ecological characters.

P. nigra ssp. pallasiana var. şeneriana, shows a distribution in Bolu, Manisa and Kütahya at an altitude of 800 m to 1250 m. It is a tree that has many stems branching from the base, with rounded or spherical, wide top and also close branches. Average needle length is 82.2 mm with 1.3 mm width. Average cone length is 51.2 mm with 26.8 mm width. The annual precipitation is 487.1 mm to 702.7 mm and annual temperature is 10.2 °C to 16.9 °C in the area. In the whole distribution area, rendsina soil type is dominant, besides this, Braunerde, Calc braunerde, Meridional braunerde and Terra Rossa of soils exist as well. Almost 65% of the determined plants showed wide distribution, 11.2% of them are Euro-Siberia, 12.9% is Mediterranean, 11.2% are Irano-Turanian element and the endemical ratio is 9.5%. In seed germination experiments, it was found that there is no inhibition on germination. Germination ratio decreased in the dark period. Low concentration (0.5%) of NaCl, HCl and KNO $_3$ did not have any effect on seed germination percent, however at high concentration of these solutions, seed germination is inhibited, and at all concentration of H₂SO₄, germination is inhibited.

Key words: Pinus, Pinus nigra, ecology, endemic, seed, germination.

1. Introduction

Pinus nigra ARN. has a very wide distribution in two small areas of Algeria and Morocco in the Northwest of Africa; in Europe, beginning from South and East Spain it is seen in south France Corsica and North east of Italy, in Austria, Yugoslavia, the Balkans, Crimea, Cyprus and Turkey are other distribution areas. It therefore is divided to five sub-species (MIROV, 1967; RICHARDSON, 1998). P. nigra ARN. ssp. pallasiana (LAMB.) HOLMBOE which is one of these five sub-species known, shows a natural distribution in the Balkans, Crimea, South Carpathian mountains, Syria, Cyprus and Turkey (Fig. 1) (RICHARDSON, 1998).

Total forest area, in Turkey, is 20.2 million hectares. *P. nigra* ssp. *pallasiana* is native to the 2.2 million hectares of this area. Due to this widespread distribution, it has been divided into four varieties in Turkey; var. *pallasiana*, var. *pyramidata*, var. *şeneriana*, var. *yaltırıkiana* (Yaltırık, 1988) and has many geographical variations (Röhrig, 1966; Yücel et al., 1999). Additionally, there is one more questionable variety (var. *columnaris-pendula*) which was introduced by Boydak (1989), however, the morphological characters have yet to be determined completely. *P. nigra* Arn. subsp. *pallasiana* (Lamb.) Holmboe var. *şeneriana* (Saatçioğlu) Yaltırık is endemic for Turkey and

determined by the name of "P. nigra Arn. var. seneriana Saatçioğlu", being found for the first time in Bolu (Çaydurt) by Saatçioğlu (1955). Later it is attached to the sub-species of "subsp. pallasiana" by Yaltırık (1988).

P. nigra subsp. pallasiana var. seneriana (Ebe Black Pine) is naturally found in Turkey often individually but sometimes in small communities around Bolu (Çaydurt) Manisa (Alaşehir) and Kütahya (Tavşanlı, Domaniç, Aslanapa, Aydıncık). In general, the tree has the appearance of a wide topped compact tree having many stems branching from the base with a round and spherical shape. Crown shape studies made had about its some biological properties and natural distribution (Alptekin, 1986; Yücel and Öztürk, 1998), pollen morphology (Yaman and Saribaş 1999), properties of seed germination (Yücel, 1997) and there is no study about its ecological properties.

In this study, the aim is to determine ecological features of var. *seneriana*.

2. Materials and Methods

This study considers only var. *seneriana* as a material and the distribution area of it is accepted as the area. Firstly, the natural distribution areas was determined and then the study concentrated on 25 sample areas representing natural range (*Table 1*).

Data collected in Bolu, Alaşehir, Kütahya, Tavşanlı and Domaniç meteorology stations (Anon., 1990) represented the ecological features of the research area. Climatic and bioclimatic properties were scrutinised relying on the methods of Walter (Öztürk et al., 1997).

Soil profiles were studied at each site and soil samples from each horizon were collected. The analysis of soil samples were done according to the followings methods; Bouyoucos, (1962) Hydrometer method for texture, Munsell Soil Colour Charts for colour, glass and calomel/combined electrode method for soil reaction, Scheibler type calsimeter for total calcium carbonate, digestion method for amount of organic substance (Wakley-Black, 1934), semi-micro kjeldal method for nitrogen,

Pinus nigra

A: subsp. mauretanica

B: subsp. salzmannii

C: subsp. laricio

D: subsp. nigra

E: subsp. pallasiana

F: subsp. dalmatica

Figure 1. – The distribution of five subspecies of Pinus nigra (RICHARD-SON, 1998).

¹) Anadolu University, Faculty of Sciences, Department of Biology, Division of Botany, 26470 Eskişehir, Turkey

Table 1. - Sample areas.

Sample area no.	Locality name	Slope %	Aspect	Altitude (m)	Latitude Longitude
1	Bolu, Çakmaklar Village,	40	West	1000	40° 46' 03"
	Susuz				31° 34′ 12″
2	Bolu, Güney Village	3 5	South	1070	40° 45′ 19″
					31° 50′ 70″
	Bolu, Güney Village	20	North	1070	40° 45′ 44′
					31° 50′ 66′
+	Bolu, Güney Village	15	Northeast	1090	40° 45' 66'
,	m 1 ** 1 1 1 ****	10	XT 11	000	31° 51' 04' 40° 42' 70'
	Bolu, Yakabayak Village,	10	North	900	31° 43′ 52′
	Guz	10	Ti n ed	1150	39° 19' 42'
	Kütahya, Aydıncık,	10	East	1150	29° 32° 47
,	Otharmanı	AF	East	1110	39° 07' 99'
	Kütahya, Çavdarhisar,	45	East	1110	29° 43' 38'
	Çamköy Tavagediğî Kütahya, Domaniç,	45	North	830	29 45 38 39° 65' 61
	Aksu Village	42	NOLLI	350	29° 73' 42'
)	Kütahya, Domaniç,	45	North	860	39° 68' 24
•	Aksu Village	70	North	000	29° 72' 43
0	Kütahya, Domaniç,	15	West	1000	39° 75' 20'
U	Aksu Village	12	West	1000	29° 68° 36
1	Kütahya, Gürağaç Village	20	South	970	39° 80' 03
1	raunja, Garagaç vinage	20	Cours	,,,	29° 53′ 34
2	Kütahya, Ilıca Village	30	South	950	39° 35' 46
. 2	Traumya, mea vinage	20	004411		30° 02' 98
.3	Kütahya, Tavşanlı,	20	North	1110	39° 30' 94
	Aliköy Village				29° 39' 46
4	Kütahya, Tavşanlı	10	North	1030	39° 28' 39
-	Dulkadir Village				29° 42' 57
15	Kütahya, Tavşanlı,	5	West	1050	39° 30' 49
	Şahmelek, Gölyeri				29° 36' 97
6	Kütahya, Tavşanlı,	10	East	1060	39° 39' 42
	Şahmelek, Kargaçamı				29° 38' 09
7	Kütahya, Yenice Village,	10	South	1250	39° 19′ 43
	Burçaklı Tarla				30° 03' 26
8	Kütahya, Yenice Village,	25	East	1100	39° 19' 5 6
	Çöğürler				30° 03′ 22
19	Kütahya, Tavşanlı	25	East	1110	39° 27' 05
	Vakıf Village				29° 40′ 60
20	Kütahya, Tavşanlı	15	West	1240	39° 27′ 05
	Karakişi Village				29° 40' 60
21	Kütahya, Tavşanlı	35	North	1125	39° 27′ 16
	Vakıf Village				29° 40′ 45
22	Manisa, Alaşehir,	20	North	815	38° 17' 18
	Bahadır Village				28° 31' 61
23	Manisa, Alaşehir,	20	North	1000	38° 17' 18
	Bahadır Village				28° 31′ 59
24	Manisa, Alaşehir,	20	North	1000	38° 16′ 28
	Bahadır Village	, -		1025	28° 31′ 31
25	Manisa, Alaşehir, Evrenli,	15	East	1030	38° 16' 63
	Kuru Kiraz				28° 29' 71

ammonium-acetate method for potassium, Olsen method for phosphorus $(P_2O_5).$ Measurement, were repeated three times for each (Olsen and Sommers, 1982; Klute, 1986). In determining soil types the study of Kubiena (1953), was considered substantially.

In excavated soil profiles, different samples were taken from each of the humus horizon for analysis. One-year-old needle samples were collected from five to ten trees, nearest to the excavated soil profiles. Needles have collected 3 m to 4 m above the ground, on the south face, taking sun light directly, and at

the tip of branches. In analysing the needle samples and organic horizons, semi-micro kjeldal was applied for nitrogen, ammonium-acetate for $\mathrm{Ca^{2+}}$, $\mathrm{Mg^{2+}}$, $\mathrm{K^{+}}$ and $\mathrm{Na^{+}}$, OLSEN for phosphorus. Procedures were repeated three times for each (Beuton and Walsh, 1973). The sheath, length, width, weight and moisture percentage were measured of the needles.

To determine the properties of the plant communities in the distribution area, herbarium samples were collected from the flora in the sample areas. Having been described according to DAVIS (1965 to 1988), the collected plants were reserved in

Herbarium of Biology Department at Anadolu University, Faculty of Science (ANES).

Between December 10 to 20, cones were collected from 5 different localities (Bolu / Güney, Manisa / Alaşehir, Kütahya / Domaniç, Kütahya / Aydıncık, Kütahya / Yenice), from (at least 25 different trees) individual trees. To determine cone and seed properties. Width and length of randomly selected 100 cones were measured. The weights of randomly selected 1000 cones were weighed by a digital balance. The assessment of results were made by means of ANOVA using Scheffe F-test with $95\,\%$ reliability. Additionally, regression analysis were carried out to determine the width, length and weight relations of cones. By leaving the cones in an ordinary room conditions, individual seeds were released. Then, the 1000 grain weight was established through separating dark and light coloured. Cones were collected in December and the germination experiments were carried out March. Germination experiments were carried out in plant growth cabinets (MLR-350 Model Sony, Japan). Using temperature (+25°C, ±1°C) with white light source (8-hourlight, 16-hour-dark daily photo period). In each experiment series and for each concentration, 100 dark coloured seeds were utilised. Each of the germination experiments were repeated for times (4x100) (WILLAN, 1985). Experiments were carried out in germination bed was formed on filter paper in petri-dishes (9 cm in diameter). During germination period, treatments applied to, each experiment series, in the same way and at the same time. Although the experiments lasted for 50 days, the germination was completely ceased on the 36th day in all series and this was accepted as the final day of experimentation. In the germination experiments 6 main experiment treatments (NaCl, H₂SO₄, KNO₃, HCl dark milieu and Control group) for each origin were arranged. In these experiment series, the seeds were incubated in NaCl, H₂SO₄, KNO₃ and HCl in 0.5%, 1%, 2%, 3% concentrations respectively. However, distilled water was only used in control group. In order to consider that the seed to be germinated, it was necessary that the radicula to touch the germination bed. The ANOVA FISHER PLSD test was applied in evaluating the results related to germination experiments.

3. Results

3.1. Natural distribution

The var. *seneriana* shows distribution in Bolu, Manisa, Eskişehir and Kütahya in Turkey, and, in general, consist of individual trees and also rarely in small communities (*Fig. 2*). They are seen in Çaydurt county of Bolu (between Akdoğan and Avşar hills) North of Güneygidriş village, Kırka, Kayı, Avşar, Muratlar, Ericek, Rüzgârlar, Börünük and around Dörtdivan county at 900 m to 1100 m altitudes. It shows distribution in Manisa around county of Alaşehir and its district of Alakıraç at the altitudes of 800 m to 1250 m. They are in Aydıncık, Örencik, Emet, Aslanapa, Tunçbilek, Yeniköy and Domaniç in Kütahya at the altitudes of 800 m to 1250 m. In such a widespread distribution area, it is found densely around Bahadır village of Alaşehir (Manisa), Güney village of Çaydurt (Bolu), Yeniceköy (Çöğürler region) in Kütahya and Domaniç/Aksu village (Akyar region).

3.2. Morphological traits of Ebe black pine

The var. *seneriana* is one of the endemic plants of Turkey and a forest tree that has many stems, branching from the base, round or long spherical, wide topped, densely branched and has the height up to 17 m. Generally it does not have a main stem, but has many sub-stems originating at the soil surface or 30 cm to 50 cm above it. Stems grow at with a 10 at 20 degrees angle.

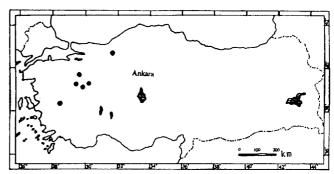


Figure 2. – The distribution of five subspecies of Pinus nigra ssp. pallasiana var. seneriana.

Rarely are there some round topped forms arising up as one stem up to 1.0 meters to 1.5 meters but after this point they have no main stem. The var. seneriana are generally 6 meters to 10 meters tall but some of them may grow up to 17 m. The tallest ones are found around Bolu/Güney and Manisa/Alaşehir; the best formed and the most decorative ones are found around Kütahya. They branch compactly with short sprouts at a 10 to 30 degree angle. The ones surrounding Alasehir have generally wider branching angles and thick sub-branches. In forest areas where there is a competition with other species for light absorption, some of its numerous stems die out by natural pruning and the close branched compact form is partially deformed. However, among deformed P. nigra ssp. pallasiana and Quercus sp. groups or in open areas, the canopy of the tree well spread up to 12 meters in diameter, but the height remains 4 to 6 meters.

3.3. Needle properties

Needles are gathered at the apex of shoots like dense rosette, in a brush and are green in colour. The shortest sheath length (4.6 mm ± 0.63 mm), was detected in the 4th sample area, the longest one (7.9 mm \pm 0.9 mm) in the 10^{th} sample area. For this reason, the sheath mean length was 5.8 mm ± 1.0 mm. The shortest needle (47.9 mm ± 8.81 mm) was found in the 24th sample area and the longest (110.8 mm \pm 11.51 mm) in the 10^{th} sample area, thus, the needle mean length was 82.17 mm \pm 9.67 mm. The narrowest needle (1.06 mm \pm 0.09 mm) was measured in the 5th sample area and the widest needle (1.56 mm ± 0.07 mm) was seen in the 10th sample area, the needle mean width was 1.2 mm \pm 0.09 mm. The lightest 100 needle weight (2.6 gr, 46.2% moisture) was measured in the 24th sample area, the heaviest (12.2 gr, 52.3% moisture) in the 10^{th} area and the needle mean height was 6.13 gr $(47.6\,\%$ moisture).

3.4. Cone and seed morphology

It was observed that there are differences in cone width and length among the cones collected from 5 different areas $(Table\ 2)$. The following characteristics were observed in the

Table 2. - Seed-collection localities (in Turkey).

Origin No.	Locality name	Slope %	Aspect (%)	Altitude (m)	Latitude Longitude
1	Bolu, Güncy Village	20	North	1070	40° 45' 44" N 31° 50' 66" E
2	Kütahya, Aydıncık, Otharmanı	10	East	1150	39° 19' 42" N 29° 32' 47" E
3	Kütahya, Domaniç, Aksu Village	45	North	860	39° 35' 56" N 30° 03' 23" E
4	Kütahya, Yenice Village, Çöğürler	25	East	1100	39° 19' 56" N 30° 03' 22" E
5	Manisa, Alaşehir, Bahadır Village	20	North	1000	38° 17' 18" N 28° 31' 59" E

Table 3. – Differences among origins *Pinus nigra* ssp. *pallasiana* var. *şeneriana* of cone length, width, weight and seed weight.

Orígin No.	Cone Width (mm)	Cone Length (mm)		Cone Weight (gr)		Seed Weight (gr)	
1	34.10±4.49 d	63,29±8,35	d	22714.31±7.29	c	23,24±1.55	d
2	23.85±1.44 a*	44,60±3,54	a*	6833,32±2,91	a*	14.66±0.36	a
3	25.38±1.29 bc	47,73±3,72	b	7634.26±3.07	a	17.86±0.74	ь
4	24,67±2,15 ab	46,15±5,36	ab	6900.84±4.22	a	13.78±0.36	a*
5	26,16±1,98 c	54,44±4.87	c	14924.24±4.03	b	19.89±0.79	c

^{*)} Within each column, means with the same letter are not significantly (P = 0.05); Annova Scheffe F-test.

data; the narrowest cone width was measured in Kütahya/Aydıncık (23.86 mm \pm 1.44 mm) and the widest ones were in Bolu/Güney (34.10 mm \pm 4.5 mm) originated cones, mean cone width was 26.84 mm \pm 4.15 mm; the shortest cone length was in Kütahya/Aydıncık (44.608 mm \pm 3.548 mm), the longest was in Bolu/Güney (63.296 \pm 8.356mm), the cone mean length was 51.246 mm \pm 7.71 mm; the lightest cone weight was in Kütahya/Aydıncık (6.833 gr \pm 2.913 gr), and the heaviest was in Bolu/Güney (22.714 gr \pm 7.29 gr) originated cones (*Table 3*). From statistical point of view, the cone width, length and weight differences were found to be significant between origins.

When the data obtained from all origins are evaluated, it was found that the relation between cone width and length is significance $(r^2=0.78)$ and the cone width makes clear the cone length as can be seen in $y=1.7252\ x+4.9475$ related to the regression equation of F=1780.4321 and p=0.0001. A positive correlation was found between cone length and weight $(r^2=0.989).$ Considering the figures of $y=900.253\ x-34333.457$ regression equation F=264.778 and p=0.0005 it can be said that the cone length is corelated to cone weight. Additionally, there is a positive significance in terms of cone length and weight $(y=0.477\ x-6.548,\ r^2=0.901,\ F=27.27,\ p=0.0137).$

It was determined that seeds clearly consisted of light and dark coloured seeds and these show differences regarding germination percentages, length and morphological properties. Light coloured seeds are 5.7 mm ± 0.5 mm in length, 2.2 mm \pm 0.2 mm in width; dark coloured seeds are 5.6 mm \pm 0.5 mm in length, 2.2 mm \pm 0.2 mm in width. 23% of light coloured seeds are full, 77% of them are empty. Also 98% of dark coloured seeds are full but 2% of them are empty. It was found out that mean 1000 seed weight of light coloured seeds was 9.97 gr and mean 1000 seed weight of dark coloured seeds was 17.9 gr. 1000 dark coloured seed weight was found as the lowest in Kütahya/Yenice (13.8 gr ± 0.36 gr) originated seeds; the heaviest in Bolu/Güney originated (23.2 gr ± 1.55 gr). When the origins of which their seeds were collected in terms of weights (1000 dark coloured seeds), the difference between Kütahya/Aydıncık and Kütahya/Yenice originated seeds indicated in significance at the 0.05 level, but the difference between other origins was also significant (Table 3).

A positive relationship was found out ($r^2=0.87$) between the weight of 1000 dark coloured seeds and the weight of 1000 cones. As it was observed from the data F=20.39, p=0.02 and related to y=0.0005 x + 11.769 regression equation, the 1000 seed weight justifies 1000 cone weight.

3.5. Properties of climate and bioclimate

Annual average temperature was measured as follows; the highest in Alaşehir (16.9°C), Tavşanlı (11.4°C), Domaniç (10.9°C), Kütahya (10.6°C) and Bolu (10.2°C) respectively. The highest annual mean temperature was measured as 42.0°C in

Alasehir, 39.4°C in Bolu, 36.8°C in Kütahya, 36.5°C in Domanic and 36.5 °C in Taysanlı. The lowest annual mean temperature was measured as -31.5°C in Bolu, -26.3°C in Kütahya, -19.7°C in Tavşanlı, -16.5°C in Domaniç and -7.5°C in Alaşehir. The highest annual mean relative humidity was measured 73% in Bolu, the lowest 57% in Alaşehir and it was 68% in Kütahya, 67% in Tavşanlı and 65% in Domanic. The maximum annual precipitation was measured in Domanic (702.7 mm), Kütahya (579.7 mm), Bolu (533.7 mm), Alaşehir (513.8 mm) and Tavşanlı (487.1 mm). The average snow covered days is mostly seen in Bolu (39.0 days), Kütahya (30.3 days), Domaniç (25.0 days), Tavşanlı (14.9 days) and Alaşehir (2.2 days) respectively. There are arid periods in which areas are lack of water having differing periods, in Bolu from July to the end of September (Fig. 3), in Alaşehir from the mid May till mid October (Fig. 4), in Kütahya from the end of June to the end of September (Fig. 5), in Domanic from the mid June until mid September (Fig. 6), in Tavşanlı from June until October (Fig. 7).

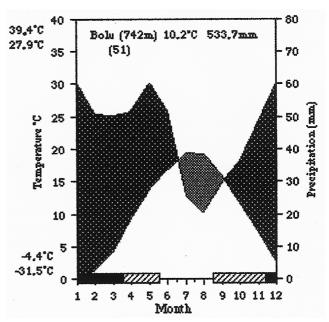


Figure 3. - Omrotermic diagram of Bolu region.

3.6. Properties of soil

Although the Rendsina soil type is the most widespread one in the research area, there are Calc Braunerde, Meridional Braunerde, Braunerde and Terra Rossa as well (*Table 4*).

Soil reaction between pH 6.0 and pH 7.8 indicated the following differences; total CaCO₃ amount between 0.00% to 89.47%,

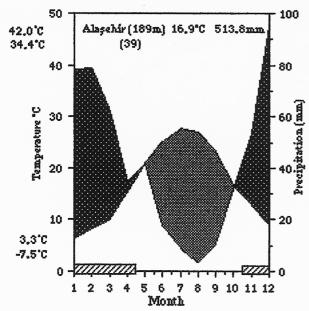
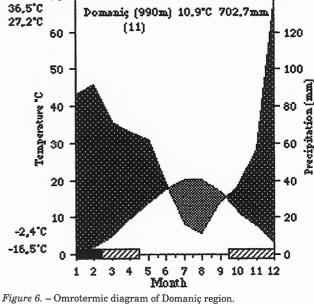



Figure 4. - Omrotermic diagram of Alaşehir region.

140

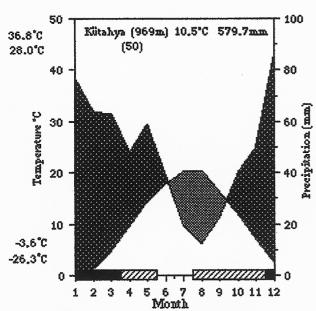


Figure 5. - Omrotermic diagram of Kütahya region.

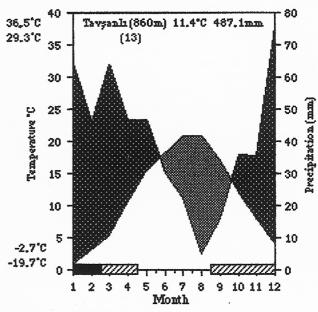


Figure 7. - Omrotermic diagram of Tavşanlı region.

amount of organic substance between 0.57% to 29.67%, nitrogen between 0.03% to 0.96%, calcium 0.07% to 1.96%, magnesium 0.02% to 4.75%, potassium 0.01% to 0.11%, sodium 0.002% to 0.020% and phosphorus (P_2O_5) 0.001% to 0.023% $(Table\ 4).$

3.7. Humus forms and its chemical features

It was found that there was Mull type humus in the whole sample areas. In the humus were found out between the values of pH 5.3 to pH 7.6, nitrogen 0.51% to 1.07%, calcium 0.05% to 1.93%, magnesium 0.01% to 0.45%, potassium 0.01% to 0.40%, sodium 0.01% to 0.03% and phosphorus 0.01% to 0.08% $(Table\ 5).$

3.8. Nutritive elements determined in needle

Values in needle samples were found between the following percentage; nitrogen 0.84% to 1.42%, calcium 0.14% to 0.67%,

magnesium 0.10% to 0.23%, potassium 0.42% to 1.52%, sodium 0.01% to 0.02% and phosphorus 0.05% to 0.16% (Table 6).

3.9. Correlation between amounts of nitrogen, calcium, magnesium, potassium, sodium and phosphorus in soil, humus and needle

Using the data collected and results of chemical analysis, elements of nitrogen, calcium, magnesium, potassium, sodium and phosphorus amounts were tested at 0.05 reliability level by regression analysis to determine whether there is a correlation between the amounts of elements in soil, needle and humus samples. A slightly positive relation was discovered between the amount of nitrogen in the needle and the amount of organic substance ($r^2 = 0.28$). As it is seen in F = 8.891 and p = 0.0067related to y = 0.318x + 0.355 regression equation, the amount of nitrogen in needle was correlated with the amount of nitrogen in the humus. A negative relation was found out be-

Table 4. - Physical and chemical properties of sample area soils.

ο.	Horizon name	Soil types depth (cm		Soil colour	Sand %	Loam %	Clay	рН %	CaCO3 total	Organic matter	N %	Ca++ %	Mg ⁺⁺ %	К ⁺ %	Na ⁺ %	P2 ¹ %
	Al	0-3	Calc	2.5Y-4/2	28,1	35.9	36.0	7,6	21,63	11.47	0.57	0,86	0,28	0.04	0.004	0.0
	A2	3-13	Braunerde	2.5Y-4.3	27.1	3 5.4	37.6	7.6	31.38	6.67	0.33	0.61	0.19	0.03	0.003	0.0
	(B)	13-28		2.5Y-5/3	25.8	37.0	37.2	7.8	42.45	4.51	0.22	0.67	0.10	0.01	0.003	0.0
	Cv	28-		2.5Y-7/3	37.2	34,4	28,4	7.8	55.02	1.52	0,08	0.57	0.07	0.01	0.003	0.0
	Al	0-2	Calc	10YR-3/1	48.4	35,3	16.3	7.3	12.03	17.54	0.71	1,16	0.60	0.11	0.006	0.0
	A2	2-5	Braunerde	10YR-4/3	40.5	29.3	30,2	7.3	22.19	7.61	0.38	0.74	0.37	0.06	0.005	0.0
		5-18	praurerec	101R-4/3	29.1	32.9	38.0	7.5	30,70	3.45	0.17	0.59	0.14	0.03	0,003	0.0
	A2/(B)								49.07	1.44	0.07	0.47	0.06	0.01	0.003	0.0
	(B)	18-36		10YR-5/4	42.1	30.5	27.4	7.8	49.07	1.44	0.07	0,47	0.00	0.01	0.003	0
	Cn	36-						~ -	2.15	12.00	0.69	0.98	0.59	0.06	0,006	0,0
	A1	0-4	Meridional	10YR-3/3	39,8	31.0	29.2	7.6	3.15	13.82						
	A2	4-29	Braunerde	10YR-4/3	37.3	27,7	35.0	7.5	3,87	6.83	0.34	0.80	0.53	0.04	0,005	0.0
	(B)	29-45		10YR-6/3	49,2	29.1	21.7	7.6	31.77	3.13	0.16	0.79	0,20	0.01	0.005	0.0
	Ĉν	45-		10YR-7/4	47.3	29.0	23.7	7.6	31.84	1.22	0.06	0.79	0.09	0.01	0.004	0.0
	A1	0-2	Calc	10YR-3/3	45.2	34.5	20,3	7.4	20.46	16.30	0.70	0,81	0.12	0.03	0.003	0.0
	A2	2-26	Braumerde	10YR-4/3	42.7	29.2	28.1	7.7	31.84	8.00	0.40	0.76	0.10	0.01	0,002	0.0
			Diamerae	10YR-6/3	54.5	26.2	19.3	7.5	48,33	4.27	0.21	0.61	0.04	0.01	0,002	0,0
	(B)	26-56							50,73	0.83	0.04	0.50	0.02	0.01	0.002	0,0
	Cv	56-		10YR-6/4	52,6	33.0	14.4	7.8							0.007	0,0
	Al	0-4	Calc	10YR-2/2	54.9	28,6	16,5	7.2	5.06	29,67	0.86	1.96	0.89	0.10		
	Α	4-17	Braunerde	10YR-3/2	36.4	29,9	33.7	7,3	15.30	12.42	0.62	0.98	0.29	0.07	0.004	0.0
	(B)	17-37		10YR-4/2	34.1	30.0	3 <i>5</i> .9	7.5	39,03	7,72	0,38	0.81	0.19	0.05	0.003	0,0
	Ċv	37-		10YR-7/3	35.0	31.7	33,3	7.7	64,44	2,43	0.12	0,58	0,10	0.01	0.003	0.0
	A.	0-20	Rendsina	10YR-6/2	35.1	26.9	38,0	7.6	56.34	4.58	0.23	0.53	0.57	0.04	0.007	0.0
		20-	110110311fd		J - 0. 1		,0		•	·			-			
	Cn		D	TEVD WA	42.0	35.5	21,6	6,9	0.01	13.88	0,69	0,57	0,34	0.04	0,005	0,
	A .	0-13	Braunerde	7.5YR-4/2	42.9								0.08	0.04	0.005	0,
	(B)	13-28		7.5YR-5/3	25.7	24,9	49.4	7.5	15,39	2.85	0.14	0.40				
	Cv	28-		7.5YR-6/3	29.9	51,3	18.7	7.5	19,03	1.73	0.09	0.37	0.05	10.0	0,005	0.
	Ai	0-5	Meridional	10YR-4/3	34.1	23,9	42.0	7.7	1.62	3.20	0.16	0.67	2,29	0.10	0,004	0.
	A2	5-17	Braunerde	10YR-4/4	42.8	19,6	37.6	7.8	0.01	1.87	0.09	0.71	2.28	0.05	0.005	0.
	(B)/Cv	17	Diadicios	10YR-5/4	67.7	19,4	12.9	7.8	0.01	1.04	0.05	0,66	2.65	0.02	0.005	0.
			C-1-		22.8	29,9	47.3	7.6	36,21	7.92	0.39	0,63	2,12	0.08	0,006	0.
	A1	0-2	Calc	10YR-5/3					43.34	3.69	0.18	0.59	1.60	0.07	0.006	Q.
	A2	2-18	Braunerde	10YR-6/2	23.6	23.1	53.2	7,8								
	(B)	18-35		10YR-7/1	22.6	18,6	58.8	7.7	43,62	1.92	0,10	0.51	0.87	0.06	0,006	0.
	Cv	35-69		10YR-8/1	17.5	16.7	65,8	7,8	43,26	0,60	0,03	0.53	1.29	0,04	0,009	0.
	A	0-30	Rendsina	10YR-3/2	42,1	29,9	27,9	7.6	20,08	12.85	0,48	0.94	1.80	0.05	0.007	O.
	Cn	30-	rendsing	10111 5/2		20,0	2		20,00	12100	٠, ١٠			0,00		
		0-10	Rendsina	7,5YR-5/3	32,5	31,6	36,0	7,5	39,41	12,42	0,62	1.13	1.38	0.06	0.005	0.
	A		Renusina													
	A/Ca	10-33		7.5YR-5/2	28,5	25,1	46.5	7.5	37.08	5.19	0.25	0.80	1.13	0,02	0,005	0,
	A	0-17	Rendsina	10YR-2/2	33,2	15,7	51.1	7.5	24,86	9,714	0,69	0.71	2,01	0.07	0.015	0,
	Ca	17-	ACTIONISM.	IOYR-4/3	52.4	18.9	28.7	7.6	66.84	1.52	0,65	0.55	1.20	0.04	0.003	Ō,
			Rendsina	10YR-2/2							0.55		4.75	0.05	0.010	ŏ.
	A	0-16	Rendsina		26.3	26.5	47.2	7.5	17.54	11.09		0.78				
	A/Ca	16		10YR-4/1	30,3	11.5	58.2	7.7	23.92	4.00	0.20	0.75	2.59	0.02	0,007	0,
	Α	0-4	Rendsina	10YR-2/2	27.5	29,7	42.9	7.4	8.85	14.64	0.73	1.14	0.96	0.07	0.006	0,
	A/C	4-17		10YR-3/2	35,4	17.6	47,0	7.5	9.57	4.52	0.23	1.01	0.31	0.03	0.009	0.
	Cn	17-														
	Α	0-8	Meridional	10YR-3/1	49.5	15,2	35,3	7.6	8,62	3,55	0.18	0.70	1.67	0.05	0.006	0.
	A/(B)	8-28	Braunerde	10YR-4/2	54.0	13.1	32,9	7.8	13.31	1.57	0,08	0.74	1.51	0.02	0,006	0
		28-	Diameroc	10YR-5/2	24.8	51.0	24.2	7.8	0.01	0.57	0,03	0.65	1.01	0.01	0.006	ŏ
	(B)		D 4													
	A	0-19	Rendsina	2,5Y-5/2	23,4	21.7	54. 9	7.4	20.30	5.38	0.29	0.75	2.60	0.01	0.006	0,
	Cn	19-														
	Α	0-18	Rendsina	10YR-5/3	36.4	31,4	32.2	7.4	38.85	6,85	0.34	0.68	0.34	0,06	0.006	0.
	Cn															
	Α	0-12	Rendsina	10YR-5/2	44.5	29.5	26.0	7.7	35.00	7.00	0.35	0.73	0.40	0.06	0,007	0.
	Cn		1101105111	101110,2												
		0.20	Colo	EV 2/1	22.1	26.6	612	7.0	26.42	9.07	0.59	1.02	1.76	0.04	0,007	0.
	A (D)	0-20	Calc	5Y-3/1	22.1	26.6	51.3	7.0	36.42	8.07	0.58	1.02	1.76	0.04		
	(B)	20-37	Braunerde	5Y-8/1	30,4	27.3	42,3	7.3	69,10	4.08	0,39	0.75	1.80	0.03	0.008	0,
	Ca	37–		2.5Y-8/1	45.4	25.1	29.5	7.6	67.69	2,82	0.64	0,63	1.89	0,03	0,012	0
	A	0-12	Rendsina	10YR-3/2	15.6	57.9	26,5	7.5	4.43	12,45	0,88	0.80	2.08	0.04	0,007	0
	Ca/Cn	12-		2.5YR-8/2	54.9	20,5	24,6	7.7	89.47	2.77	0.42	0,34	1.70	0.01	0,006	0
	Α	0-28	Rendsina	2,5Y-4/1	42.5	22.1	35,4	7.4	37,30	9.38	0,87	0,87	1.76	0.04	0,020	0.
	Ca	28-		2.5Y-8/1	44.8	36.8	18,4	7.5	84.20	2,88	0,19	0.40	1.55	0.01	0.010	0
	Al	0-1	Braunerde	10YR-5/2	62.9	21.6	15.5	6.3	0.00	13.99	0.70	0.38	1,34	0.04	0.007	ō
		1-17	Diamiciac											0,02	0.006	Ö,
	A2			10YR-5/4	55.5	23,2	21.3	6.7	0.00	3,10	0.15	1,57	1.00			
	A2/(B)1	17-54		7.5YR-4/4	50,5	15,2	34.3	7.0	0.00	1,69	0.08	0.12	2.86	0.02	0,006	0
	(B)1	54-103		7,5YR-4/3	40.2	20.0	39.8	7.0	0.00	2.64	0.13	0.13	3.31	0.02	0.009	0
	(B)2	103-107		7.5YR-4/4	46.2	19,5	34.3	7.0	0.00	0.92	0.05	0.08	3.14	0.02	0,007	0
	Ĉv .	107-		7.5YR-4/6	45,6	23,9	30.5	7.3	0.00	0.88	0.04	0.10	4.01	0.02	0,007	0
	Al	0-3	Terra Rossa	7.5YR-3/3	56,4	33,9	9.7	6.7	0.00	26.93	0,96	0.78	2,96	0.06	0.007	ŏ
			Toria NOSSA								0.32				0.006	
	A2	3-16		7.5YR-4/3	58.7	17.4	23.9	7.1	0,00	6.35		0.37	1.56	0.04		0,
	(B)	16-49		7.5YR-4/4	60,5	17.6	21.9	7.3	0.00	2.13	0.11	0.07	2,90	0.02	0.006	0,
	Cv	49		7.5YR-5/6	67.0	16,1	16,9	7.5	0.00	0.67	0.03	0.09	2,48	0,01	0.003	0.
	A1	0-5	Braunerde	7.5YR-4/4	41.8	30.7	27.5	6.0	0.00	5,21	0.26	0.18	0.67	0.07	0.003	0
	A2	5-24	===	7,5YR-4/3	41.8	26,6	31,6	6,5	0,00	4,31	0.21	0.38	0,61	0.08	0.003	0
	A2/(B)	24-66		7.5YR-4/4	37.5	26.6	35,9	6,8	0,00	2,15	0,11	0,34	0.58	0.02	0,003	ō
	(B)	66+113		7.5YR-3/6	41.2	18.3	40.5	6.5	0.00	1,47	0.07	0.39	0.73	0.02	0.004	0
	(B)/Cv	113-		7.5YR-4/6	18,1	12,6	69.3	6,4	0.00	1,30	0,06	0,62	1.39	0.02	0.004	0
	Al	0-3	Terra Rossa	7.5YR-3/3	71.2	20.2	8.6	6.5	0.00	17,44	0.86	0.69	0,49	0,05	0,003	0
	A2	3-13		7.5YR-5/3	72,2	17.5	10.3	6.9	1.47	2,36	0,12	0,20	0.22	0.03	0.002	0,
	(B)	13-28		7.5YR-5/4	58.2	30.5	11,3	7.0	0.73	0.76	0.04	0.12	0.19	0.03	0,002	Õ,
	1401			7.5YR-4/6	66.1	17,5	16.4	7.0	0.73	1.37	0.07	0.17	0.23	0.03	0.003	0,
	(B)/Cv	28-														

tween the amount of magnesium in the needle and the amount of nitrogen in humus ($r^2=0.28$). According to the values of F=4.5704 and p=0.0219 related to y=-0.1096x+1.014 regression equation, the amount of magnesium in the needle

correlated with the amount of magnesium in the humus. A positive correlation was indicated between the amount of sodium in the needle and in the humus ($r^2 = 0.2103$). Values of F = 0.2103 and p = 0.0219 correlated to $y = 0.4357 \ x + 0.0053$ regression

Table 5. - Amounts of N, Ca, Mg, K, Na, P and pH in humus horizons.

Sample area	Humus horizon		N %	Ca %	Mg %	K %	Na %	P % (1	pH /2 H ₂ O)
no.	name	high		70	70	70	70	70 (1	/2 H ₂ O)
1	01	3	0.75	1.77	0.15	0.08	0,02	0,04	
	O2	2	0.69	1.44	0.07	0.01	0,01	0.01	6.0
	O3	2	0.61	1.55	0.07	0.01	0.01	0.01	6.8
2	O1	3	0.61	0.78	0.06	0.08	0.01	0.03	_
	02	3	0.79	0.79	0.04	0.06	0.01	0.04	5.5
3	O3 O1	3 4	0.88 0.62	1.32 1.31	0.07 0.17	0.07 0.07	0.02 0.02	0.02	5.9
,	02	4	0.61	1.21	0.08	0.04	0.02	0.02	6.9
	O3	3	0.72	1.42	0.06	0.02	0.01	0.01	7.5
4	O1	2	0.99	1.33	0.12	0.13	0.03	0.01	-
	O2	2	0.65	0.05	10.0	0.01	0.01	0.01	6.7
-	O3	1.5	0.81	0.93	0.02	0.03	0.01	0.01	7.3
5	01	4	0.76	1.93	0.28	0.06	0,02	0.01	_
	O2 O3	3 3	0.76	0,60	0.05	0.01	0.01	0.03	6.4
6	01	3	0,99 0.60	0.97 1.07	0.06 0.17	0,06 0,08	0.01	0,01	6,6
Ū	O2	2	0.51	1.07	0.10	0.09	0.02	0,04 0.01	7.3
	O3	2	0.60	1.04	0.10	0.09	0.01	0.01	7.4
7	OI	2	1.07	1.00	0.15	0.11	0.02	0.04	
	O2	1.5	0.76	0.75	0.08	0.05	0.01	0.02	5,3
_	O3	2	0.78	0.77	0,07	0.05	0.01	0.01	6.5
8	01	3.5	0.54	0.94	0.22	0.10	0.02	0.03	
	O2 O3	2	0.52	0.73	0.22	0.08	0,01	0.01	6.6
9	O1	2 2	0.60 0.63	0.69 1.09	0.22 0.24	0.08	0,01 0,02	0.01 0.04	7.0
,	02	2	0.60	1.11	0.24	0.09	0.02	0.04	6.9
	03	1.5	0.64	0,94	0.29	0.08	0,01	0.01	7,2
10	O1	5	0.52	0.88	0,20	0,08	0.02	0.05	_
	O2	3	0.52	1.05	0.17	0.05	0.01	0.02	6,8
	O3	3	0.56	1,03	0.17	0,05	0.01	0.02	7.1
11	01	2	0.53	1.17	0,16	0.13	0.02	0.03	
	O2 O3	3 2	0.51	1.19	0.13	0.08	0.01	0.01	7.0
12	01	4	0.63 0.80	1.18 1.12	0.13 0.34	0.08 0.09	0,01 0,02	0.01 0.01	7.2
	02	3	0,75	0.80	0.18	0.09	0.02	0.01	6.4
	O3	2	0.71	0.77	0.19	0.09	0.01	0.01	7.5
13	Ol	2 3	0.76	1.31	0.15	0.08	0,02	0.03	
	O2		0.71	1.17	0.42	0,09	0.01	0.03	6.8
	O3	3	0.80	1.04	0.43	0.09	0.01	0.02	7.5
14	O1	2	0.71	0.76	0.20	0.09	0.02	0.05	
	O2 O3	1 1	0.7	1.29	0.11	0.06	0.01	0.02	6.2
15	01	3	0.72 0.64	1.16 0.20	0.12 0.14	0.07 0.08	0.01	0.02	7.3
12	O2	2	0.61	0.20	0.14	0.09	0.03 0.01	0.04 0.02	- 6.8
	O3	2	0,69	0.98	0.42	0.09	0.01	0,02	7.2
16	O1	4	0.65	1,45	0.15	0.07	0,02	0,02	
	O2	3	0.67	0,90	0.40	0.08	0,01	0.02	6.6
	O3	3	0.75	0,97	0.40	0.09	0.01	0.02	7.0
17	01	4	0,61	1.17	0.19	0.08	0.02	0,03	_
	O2 O3	2.5 2	0.62	1.18	0.16	0.07	0.01	0.01	7.1
			0.75	1.40	0.17	0.06	0.01	0.01	6,6
18	01	2	0.65	1.24	0.13	0.05	0.02	0.02	-
	O2 O3	2	0.65	1.01	0.13	0.06	0.01	0.01	7.6
19	OI	4	0.68 0.85	1.15 1.10	0.16 0.16	0.07 0.40	0.01 0.03	0.01 80.0	7,6
	O2	3	0.98	0.79	0.18	0.40	0.03	0.01	6,9
	O3	3	1.05	0.85	0.20	0.05	0.02	0.01	7.0
20	O1	4	0.75	0.56	0.20	0.40	0.03	0.04	_
	O2	3	0.69	0.60	0.16	0.04	0.02	0.02	6.9
	O3	2	0.85	0,60	0,19	0.04	0.02	0,02	7.2
21	01	3	0,74	1.15	0.10	0.20	0.03	0.04	
	O2	3 2	0.69	0.97	0.18	0.05	0.03	0.01	6.8
22	O3 O1	2 3	0.99	0.99	0.20	0.06 0.08	0.02	0.01	7.0
	02	1.5	0.73 0.71	0.89 0.50	0.22 0.07	0,08	0.02 0.01	0.05 0.03	5.9
	O3	2	0.71	0.26	0.09	0.05	0.01	0.03	6,0
23	01	3	0.60	1.10	0.28	0.08	0.02	0.06	
	02	2	0.77	0.45	0.21	0.06	0.01	0,03	6.0
	O3	3	0.99	0.61	0.28	0.05	0,01	0.01	6.1
24	O1	3	0.68	1,28	0.10	0.07	0.02	0.05	_
	O2	1.5	0.64	0.59	0.06	0.05	0.01	0.01	5.9
05	03	1.5	0.67	0.65	0.08	0.07	0.01	0.01	6.1
25	01	3	0.80	0,95	0.13	0,11	0.02	0.04	_
	O2 O3	3	0.76 0.88	0.78	0,09	0.06	0,01	0.02	5.9
	~	_	U. 00	0.72	0.09	0.05	0.01	0.02	6.2

equation predicted that the amount of sodium in the needle justifies the amount of sodium in the dead covering. A part from above values, the correlation found out in terms of the amount of nitrogen, calcium, magnesium, sodium and phosphorus in the needle, dead covering and soil were not found to be significant, thus, it was concluded that r^2 , 'F' and 'p' data, related to regression equation, given completely in *table* 7, are not in quality of justifying these correlation alone.

Table 6. – Amounts of N, Ca, Mg, K, Na and P in *Pinus nigra* ssp. pallasiana var. seneriana needles.

Sample area No.	N %	Ca %	Mg %	K %	Na %	P %
1	1.16	0.20	0.12	1,00	0,02	0.09
2	1.32	0.25	0.12	1.16	0.01	0.05
3	1.26	0.26	0.10	0.89	0.01	0.13
4	1.15	0.29	0.13	0.95	0.02	0.11
5	1.15	0.27	0.14	1.37	0.02	0.12
6	1.27	0.20	0.11	1.05	0.01	0.09
7	1.21	0.17	0.11	1.26	0.01	0.11
8	0.98	0.32	0.16	0.84	0.02	0,06
9	0.90	0.32	0.19	0.95	0.02	0.05
10	0.88	0,65	0.17	0,63	0.02	0.06
11	0.85	0.33	0.15	0.89	0.02	0.11
12	0.87	0.27	0,21	1.05	0,02	0.07
13	1.26	0.23	0,13	1.00	0.01	0.09
14	1,33	0.19	0.14	1.31	0.01	0,08
15	1.15	0.21	0.13	1.00	0.01	0.15
16	1.33	0.14	0.14	1.31	0,01	0.16
17	0.84	0.27	0.11	1.16	0.01	0.09
18	1.00	0.67	0,23	0.42	0.01	0.05
19	1.42	0.25	0.17	1.05	0.02	0.11
20	1.34	0.42	0.19	0.63	0.02	0,05
21	1.32	0.54	0.14	0,68	0.02	0.07
22	1.04	0.31	0.19	1.37	0.01	0,06
23	1.14	0.16	0.14	1.37	0,01	0.13
24	0.99	0.48	0.11	1.52	0.01	0,15
25	1.04	0.29	0.16	1.47	0,01	0.05

Table 7. – The correlation and statistics that indicate N, Ca, Mg, K, Na and P amounts included in needles, humus and soil.

	Regression Coefficient	Intercept	Determin	ation Coeffic	ient
	A1	A ₀	_r 2	F	Р
Needle (N) - Humus (N)	0,318	0.355	0.27	8,891	0.0067*
Needle (N) - Soil (N)	0,1632	0.168	0.03	0,8343	0.3705
Needle (Ca) - Humus (Ca)	-0.1096	1.014	0.004	0,098	0.7571
Needle (Ca) - Soil (Ca)	0.1024	0,6425	0.004	0.1077	0.7457
Needle (Mg) - Humus (Mg)	0, <i>57</i> 75	0.0826	0.05	1.4589	0,2394
Needle (Mg) - Soil (Mg)	-0.1096	1.014	0.29	4.5704	0.0219
Needle (K) - Humus (K)	-0.0295	0.1112	0.08	2.015	0.1692
Needle (K) - Soil (K)	0.0032x	0.037	0.002	0.0595	0.8095
Needle (Na) - Humus (Na)	0.4357	0,0053	0,21	6,124	0,0211
Needle (Na) - Soil (Na)	0.0921	0,0049	0,03	0,7709	0.389
Needle (P) - Humus (P)	-0,0296	0,0239	0.02	0,4793	0.4957
Needle (P) - Soil (P)	-0,0199	0.0057	0.06	1.4743	0.237

^{*} Significant at 0.05 level.

3.10. Floristic composition

To determine the plant communities in Ebe black pine region samples were collected, identified and the results presented in *table 8*. It shows a distribution in 3 different phytogeographical regions of Bolu, Manisa and Kütahya. Depending on this, floristic composition was analysed under three sub-titles:

a) Floristic composition of Bolu

Pinus nigra ssp. pallasiana comprises the tree layer around Bolu distribution. However, in several places, Abies nordmanniana ssp. bornmuelleriana and P. sylvestris ssp. hamata, Fagus orientalis and Acer campestre ssp. campestre exist in the composition either individually or in small communities. As for shrub layer, the widespread taxons are Juniperus oxycedrus ssp. oxycedrus, Cornus mas, Ligustrum vulgare, Corylus avellana var. avellana, Rosa canina, Quercus ithaburensis ssp. macrolepis, Q. pubescens, Q. robur ssp. robur, Q. virgiliana, Cotoneaster nummularia, Viburnum lantana. In the herb layer, the members of Lamiaceae (Labiatae) (13.6%), Fabaceae (Leguminosae) (9.9%), Compositae (7.4%) are the most wide spread taxons of their families. Of the flora discovered in the sample area around Bolu consists 25.9% Euro-Siberian, 8.6% Mediterranean, 1.2% Irano-Turanian elements.

Pre-25 등 교 25 A A 5.5 23 2.7 2 g 2 z g g g 2.2 2,2 1,2 2.2 4-+ 2 g Z 2 g 2 1,2 3,3 2 5 z 2 6 3 3.3 22 2.2 222 + 2 +2 2 12 × 8 & A Ξ 11-12-22 Ξ. 8 2 ≥ ≈ 8 ₽ 1777 7 2= =2 ₹ 등 표 원 충 <u>국</u> 55 +1 +1 333 +1 777 77 7 81 H 2 G B B 333 2.3 7 C 8 0 9 B 333 22 2.2 1.2 7 不훓까끙 홈꽃 న్జ్ ≽ ి శ్రీ నై +1 +1 7 7 g x 5 g A 177 7.7 2,2 +17 4+22 :: 1.2 123 11 7 = g ~ 8 4 A B A £ 7 % 22 £ 22 ± 7 01 8 ¥ 21 8 H : \$ + + + + 7373 3 ~ ã x & & A 7.7 2==2 1.2 223 8 2 2 4 4 Z 1.2 2722 7 5 4 5 E +1+1 4 = ~ g x = 68. ₹.± **Ŧ**Ŧ 4 g A 7 2 g A 1.1 7 ~ 5×8 8 £ 5.5 2,2 7 25 S € E 5.5 7 7 ~ 5 8 8 £ 5.4 Pinus nigra ssp., pallasiana var. pyramidata Quercus nobur ssp., robur Pinus brutia pallasiana var. şeneriana Rosa canina Viburnum lantana Cornus mas Quercus infectoría ssp. boissieri Sample area no.
Altitute (m)
Aspect
Slope (%)
Sample area width (m²)
Parent rock

 $Table \ 8$. – Phytosociological table.

CH=Chalk; LM=Limestone, SN= Sandstone, SR=Serpentine. West, W; North, N; East, E; South, S.

Dorycnium pentaphylium ssp. berbaceum Onobrochis oracilis	7	∓ -	_	1.2	7	7	Ŧ	Ŧ	Ŧ Ŧ			7	7	F 7	¥			Ŧ	7	÷				
Globularia trichosantha Dacrylis elemerata ssp. hispanica			. 71		1.1		7	1.2	; ;	7	1,2		7	7	!	1.2	1.2	77	!		2.2		2,	1.2
Anthemis tisctoria var. discoidea	77		۰.	:	77	Ŧ	!	1				1.1	77			=	7		7	7				77
Container and sopration Teaching pollum					•		1.2	1,2	77	7		1.2	77	7	Ŧ	2.2	1.2		:	1.2		•	~~ +	:
Cinoquia viigas Clinoquiun valgare ssp. vulgare	Ŧ	7	∓	Ŧ			: 7		: 7	: 7			7	- 7	: 7				7	: 4				7
Alyssum gibiricum Euroborita mancoloda					¥ 4	77	7	7	777	127	7	2.2	7	F	Į.				1.2	į.				
Trifolium praternse var, praternse	3:	1.2 1.2	•	1.1 +1		F	=		:	;			‡					Ŧ		7	1.2		-	2.3
riypencum periotatum Salvia candidissima ssp. occidentalis					7	•				•			•	Ŧ	7	1.2	7		•		7	:	7	1
Briza media Polvozla anatolica	3 7 3 7	3 7 3 7	_	+	7	7				Ŧ			Ŧ				Ŧ		7					
Galium subuliferum						7						7	7	77	=	1.2	7:		=					
Figure coniculation of the constants of the constant of the constants of the constant of t				7									₽	77	∓		7.		<u>:</u> :2	,		1.2	1.2	
Paronychia angorensis Teuciium chamaedivs sen, chamaedivs	-	1.2	_	1.2	∓					1.2	Ŧ	; 3		7	Ŧ		7	7		7				
Cíchorium intybus Sideritis montana sep. remota		7			Ŧ	7	∓	7	7	Ŧ						7	∓		7					
Linum hirsutum 8sp, anatolicum var, anatolicum	•					7						1,2		7			1,2							
Lase (filobum Campanula lyrata ssp. lyrata	-	∓		T+							Ţ:					-	:	7:		7	7	Ŧ		
A Bheims creuca ssp. tenuloda Ibula ensifolia	7				Ŧ						77					∓	¥	; ;						
Leontodon crispus ssp. asper var. asper Conocio, vernatio	7	- 7 	7	4									7			7	7	Ŧ						7
Xeranthemum annuum	-	-					7	Ŧ	Ŧ	Ŧ						-	2							:
Convolvatus motoscriccus Ssp. notoscriccus Sedum acre	7				7.							2.2		+2	7	7:	‡ ;							
Alyssum murale sap, murale var, murale Deris ramica							7				7		Ŧ	7		Ŧ	7	77						
Scabiosa argentea							∓`	Ŧ	Ŧ	7									•					
Astragalus strictispinis Medicago sativa ssp. sativa						Ŧ	7.					77.77	Ŧ Ŧ	•				7	2	,				
Vicia cracca 88p. stenophylla Globularia orientalis					1.2	7						1.2		7.	‡		+5			7.1				7
Stachys cretics asp, anatolica Thymis lencestoms var lencestomis	7	-	7	-		7																	1.2	1.2
Thymus longicaulis ssp. longicanis Macari melesi	1,2				}						7	2,3		+ +	77			7					ļ	ł
Viscum album					•	:					1.2			1	!	-	-	17	3	1.1				
A eguops unuocinuata ssp. unuocinuata Consolida hellespontica					7 7	Ŧ									7	1	Ξ	Ŧ	7:					
rateura integrationes Certific minor ssp. auriculata Ofenthus lendered the					7		7	7	7	77				F	ī				ī					
Authorist inclosia var. inctoria								-	7	:										r	-	`	Ŧ	
Picris strigosa							7	:	7	Ŧ		-												
Conversion intents Anthyllis vulneraria ssp. boissieri Astraeaius microcenbalus sap. finitimus		4	+	-	7	7					-							Ŧ	Ŧ					
Astragalus vulneraria Chamaecvisma aminis	7	7								7							77			7				
Hedysarum varium Medicaco risidula var. risidula												1.1		+2	+2		+		Ŧ	7				
Psoraleae bluminosa I fifolium arvense var, arvense							7		7	7										-	-	-		7.
Comment of the second of the s								•	,										-					

Allium cupina ssp. hittovaginatum Onchia anzelica Onchia anzelica Olebiem montanum ssp. montanum Helieborus orientalis Sanguisorba union esp. muricata Chinophora teanifolia ssp. sibhorpiana Onocama isamicum Dianthus micrathus Dianthus zonatus Platunta zonatus Himana acriphylla Helianthennum umandarium ssp.lycaonicum Ginstum hypokeucum Fliago pyramidata Ginstum hypokeucum	17	7 3 7 7	. 77	*	∓	7 7	∓ ∓ ∓			∓	; 7	∓ ∓	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	+ + + + + + + + + + + + + + + + + + +		7	∓ ∓	· ∓	-	
ssp., angustifolius nn ssp., aepilatum ssp., depilatum ssp., parviforum), pinnatifida um var, flavum	~			∓ ∓	* * T	T		7	∓ ∓		7 7		7 7		∓ ∓	7 77	7	Ţ	∓	_
Omblogalum concesum Lianum nodiforum 1 Lianum nodiforum Papaver theesa Papaver caractum ssp, exaratum Phicum exaratum ssp, exaratum Phicum exaratum ssp, exaratum Reneeum avar, lutea Reseda iutea var, lutea Avernila involuerata Avernila involuerata	7	7		# # #	77 7					2,2	t 7 7 1.	Ŧ	7	7	7 7	}	1,2	1.2		
rum rumi sep, buxbaumii ifolium var, cheirauhifolfum sep, leptophylla sum sep, limonifolium ila pides sep, rapunculoides p. hybrida	7	7 77	Ţ	· = = =	7	1	∓ ∓			1	ł			∓	7 7 7		∓ ∓ 3			

Michael and the second of th	12 12 13 15 15 15 15 15 15 15													
1,	1.2													
handstarter of the control of the co	1,2 1,2 1,1 1,2 1,1 1,2	Achillea millefolium									2,2			
1.2	1	Carlina vulgaris					7							
1.2 1.2 1.2 1.3	1.2 1.2 1.3	Hieracium lasiochaetum							Ŧ					
1.2 1.2	1.2 1.2	Scariola viminea											Ŧ	
1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	Taraxacum officinale				1,2								
1	1.5 1.5	Tussilago farfara								7				
1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	Sedum album										•		
And the state of t	### ### ### ### ### ### ### ### ### ##	Sedum confertifiorum		٠								7		
bush she she she she she she she she she s	# 1	A brown mission		Ŧ										
Active states of the state of t	1 1 1 1 1 1 1 1 1 1	Anysaum minus Cardaria draha sen draha								7		•		
And selections	And the state of t	Sinanis arvensis			+					•				
A	A	Euphorbia amy gdaloides			•						7			
*** A	*** The state of t	Chamaccytisus hirsutus										7		
## # # # # # # # # # # # # # # # # # #	## Actorities ## # # # # # # # # # # # # # # # # #	Galega officinalis	Ŧ											
# # # # # # # # # # # # # # # # # # #	# sup, functions # 1	Ononis adenotricha var. adenotricha											7	
# 1	# + + + + + + + + + + + + + + + + + + +	Trifolium alpestre										1.2		
# sup, turicion # 4	# sup, funcional # # # # # # # # # # # # # # # # # # #	Trigonella atrantiaca						•		Ŧ				
# pp futtoring 12	1,1 1,2 1,1 1,2 1,1	Ingonella rostrata	•					-						
# # # # # # # # # # # # # # # # # # #	# # # # # # # # # # # # # # # # # # #	Centaurum erythraea 8sp, turcicum												
## ## ## ## ## ### ### ### ### ### ###	# 1	Centrata ascieptadea	7								:			
### 1.2	# 1.2 # 1.2				,						1.1	•		
# # # # # # # # # # # # # # # # # # #	### ### ### #### #####################											7.7		
# 1	# 1		*							7				
# 1	# 1	Salvia etutinge	17							-				
2.2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1	2.2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1	Salvia grigora	Ī								Ŧ			
# # # # # # # # # # # # # # # # # # #	## ## ## ## ## ## ## ## ## ## ## ## ##	Thymus longicaulis aso, chaubardii yar, alternatus						2.2			:			
+1 + + + + + + + + + + + + + + + + + +	+1 + + + + + + + + + + + + + + + + + +	Allium pariculatum ssp. papiculatum						ļ			7			
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +	+1	Asphodelina damascena ssp. damascena								Ŧ				
# # # # # # # # # # # # # # # # # # #	# 1	Muscari armeniacum	7											
1	predocuate block predocuate block predocuate block predocuate block predocuate block predocuate hil h. cances π π π π π π π π π π π π π	Muscari neglectum								7				
## ## ## ## ## ## ## ## ## ## ## ## ##	## ## ## ### ### ### ### ### ### ### #	Orgithogalum narbonense										7		
### ### ### ### ### ### ### ### ### ##	## ## ## ### ### ### ### ### ### ### #	Linum bienne										7		
And the september of th	### ##################################	Linum hirsutum ssp. pseudoanatolicum										7		
#1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #	# # # # # # # # # # # # # # # # # # #	Arceuthobium oxycedn								•		7		
+ 1 + 1 + 1	+1 +1 1.2 x x x t, makelep +1 +1 +1 +1	Cephalanthera damasonum								Ŧ		•		
# 1	P, comosa P, comosa A A A Li Li Li Li Li Li Li L	Cepnalamaera mora		:								7		
P, comosa 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1.1 2.2 3.2 3.4 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4	Opposations and A conflows himselfe		F						4				
# 1	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	A sellons comosa sen, comosa								•				
x x 2.2 2.2 1.2 2.2 1.2 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	2.2 6 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	Aegilos cylindrica									ļ		1.2	
xx	xx	Briza hamilis										7		
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +	22 +1 +1 +1 +1 +1 +1 +1 12 +1 +1 12	Bromus danthoniac									1,1			
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +	2.2 +1 +1 +1 +1 +1 +1 1.2 +1 +1	Bromus sterilis									,	17		
+1 +1 +1 +1 +1 +1 +1 +1 +1 1.2	+1 +1 +1 +1 +1	Festuca callieri									2.2			
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +	+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 1.2 +1 +1 +1 1.2 +1 +1 1.2 +	Pos alpina sep, fallax									•	1,2		
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +	+1 +1 +1 +1 1.2	Polygata supina								•				
+1 +1 +1 12 +1 12 +1 13	+1 +1 +1 12 +1 12 +1 13 +1 15 15 15 15 15 15 15 15 15 15 15 15 15	Folygonum av Kunare Adonio flammas						17		Ŧ				
+1 +1 12 12 +1 1.2	+1 +1 1.2 +1 1.2 +1 1.2	A orimonia eunatoria	7					ī						
+1 +1 1.2 +1 1.3	+1 +1 1.2 +1 +1 +1 1.2 +1 1.2 +1 1.2 +1 1.2	Ceresus mathales var. mahales	-			Ŧ								
+1 12 +1 1.2 +1 1.2	+1 12 +1 1.2	Fragaria vesca								7				
12 +1 +1 13	1.12 +1 +1 1.12	Polentilla recta						Ŧ						
+1 +1 1.2	+1 +1 1.2	Asperula namelica									1.2			
+1	+1	Asperula lilaciffora asp. phrygia										7		
2	£+	Calium tricornutum		7						•				
		Viola odorata								Ŧ				
		Viola parvula									1,2			

b) Floristic composition of Manisa

Although *P. nigra* ssp. pallasiana is the dominant tree species around Manisa (Alaşehir) distribution area, *P. brutia* scarcely exist in this composition. In the shrub layer there are Cistus laurifolius, C. salviifolius, J. oxycedrus ssp. oxycedrus, Q. cerris var. cerris, Q. coccifera, Q. infectoria ssp. boissieri, Spartium junceum, Pistacia terebinthus ssp. palaestina. As for the herb layer, taxons belonging to following families are seen; the most widespread one is Fabaceae (19.4%), Compositae (16.7%), Lamiaceae (13.9%) respectively. In the region, 19.4% of the flora Mediterranean and 5.6% it are Irano-Turanian elements.

c) Floristic composition of Kütahya

Although P. nigra ssp. pallasiana is the dominant species forming tree layer around Kütahya, J. excelsa, J. foetidissima, Q. cerris var. cerris and P. nigra ssp. pallasiana var. pyramidata are included in the composition. The shrub layer consists of the widespread families of Fagaceae, Cupressaceae, Rosaceae and Cistaceae. Among these, especially Quercus sp., Juniperus sp. and Cistus laurifolius comprise the main texture of the shrub layer. In some occasions, Viburnum lantana, Cotoneaster nummularia, Rosa canina, Rubus sanctus and others exist in the composition. As for herb layer, the most widespread families are; Fabaceae (18.9%), Lamiaceae (11.5%) and Compositae (7.3%). The most widespread taxon in the herb layer are; Onobrychis gracilis, Teucrium polium, Centaurea virgata, Alyssum borzaeanum, A. sibiricum and Helianthemum canum. The flora in Kütahya consists of elements of 7.8% Euro-Siberian, 13.0%, Mediterranean and 11.5% Irano-Turanian.

3.11. Seed germination features

a) Effects of different salt (NaCl) concentrations on germination

The 0.5% NaCl use resulted as 93% to 97%, 1% NaCl use resulted as 80% to 97% germination; 2% NaCl use in Manisa / Alaşehir and Kütahya / Domaniç originated seeds resulted no germination at all, but 1 to 3 of germination was observed in others. There was no germination in the use of 3% NaCl. Although the germination percentage of the series in which 0.5% NaCl was used was lower than the control group, the difference indicated insignificance at 0.05 level (*Table 9*). Therefore, it can be said that, NaCl inhibits the germination at a 1% and higher concentrations. When origins are correlated with the sensitivity to NaCl, there is significant difference among origins (*Table 10*).

b) Effects of different potassium nitrate $(\mathrm{KNO_3})$ concentrations on the germination

In 0.5 KNO $_3$ experiment series germination was 91% to 100%, in 1% KNO $_3$ series the result was 71% to 100%, in 2% KNO $_3$ series germination was 5% to 80% and in 3% KNO $_3$ application resulted as 0% to 31% germination. The difference

Table 9. – The total average effect of darkness and NaCl, $\rm KNO_3,\ H_2SO_4,\ HCl$ over germination of five origins.

	Concentration		ination ntage, %
NaCl	0.5% 1%	96 87	i f
	2%	1	a
KNO3	0,5%	94	h
	1%	90	g
	2%	52	d
	3%	17	b
H ₂ SO ₄	0,5%	67	е
HCl	0.5%	90	g
	1%	35	č
	2%	1	a*
Dark		84	f
Control	_	97	i

^{*)} Within each column, means with the same letter are not significantly; 95% significant; Annova FISHER PLSD test.

between the germination percentage of KNO_3 series and control group was found to be statistically significant (Table~9). It was found to be significant when all origins were compared in terms of the sensitivity to KNO_3 ; it was revealed that the difference of germination percentage between the origins are significant at 0.05 level (Table~10).

c) Effects of different Sulphuric Acid $\rm (H_2SO_4)$ concentrations on the germination

While 66% to 83% germination was observed in 0.5% $\rm H_2SO_4$ series, there was no germination in other series. In series where germination occurred the percentage was lower than that of control group and the difference was statistically significant (Table~9). For this reason, it can be said that the germination was inhibited by $\rm H_2SO_4$. It inhibited germination completely when $\rm H_2SO_4$ concentration was over 1%. The difference was significant when different origins were compared with in terms of their sensitivity to $\rm H_2SO_4$ (Table~10).

d) Effects of different Hydrochloride $\mbox{Acid}\mbox{ (HCl)}$ concentrations on the germination

In 0.5% HCl use resulted 80% to 96% germination, 1% use of HCl resulted 9% to 80% germination, while 2% use of HCl in series of Kütahya / Domaniç resulted as 1%, other seeds were not germinated in other series, 3% of HCl use hindered germination. Though germination percentage in 0.5% HCl series was lower than that of control group, the difference was insignificance ($Table\ 9$). However, the effect of other concentrations was found to be insignificant of control group and the dif-

Table 10. – The total average effect of darkness and NaCl, KNO $_3$, H $_2$ SO $_4$, HCl over germination of different concentrations (0.5%, 1%, 2%, 3%).

Origin No.		l nination	KNO Gern %	3 nination	H ₂ Se Gerr %	O4 nination	HCl Gern %	nination	Dark Gerr %	i nination	Cont Gern %	rol nination
1	46	b	72	b	17	b	28	a	71	a*	97	b
2	49	c	42	a*	18	b	25	a	84	C	99	С
3	43	a*	52	a	17	b	44	c	91	đ	96	b
4	44	a	73	b	12	a*	23	a*	71	a	94	a*
5	50	c	77	b	21	b	38	b	98	e	98	b

^{*)} Within each column, means with the same letter are not significantly; 95% significant; Annova FISHER PLSD.

ference was insignificant (*Table 10*). When the origins were compared with their sensitivity to HCl, the difference was insignificant at 0.05 level as well.

e) The effects of light on germination

Although the germination in continuous dark took place (71% to 98%) was lower than that of control group (8-hourlight, 16-hour-darkness photo period) (*Table 9*), and the difference was significant (*Table 10*).

Including the control group, when all the origins were compared with each other by using the averages of the results of experiment series, the highest germination was found in Bolu / Güney (70.7 \pm 37.6) and the lowest germination was observed in Kütahya / Yenice originated seeds (50.2 \pm 39.8) (*Table 10*).

4. Discussion

In the distribution area of Ebe black pine the annual mean precipitation fluctuates between 487.1 mm to 702.7 mm; the annual mean temperature is between 10.2 °C and 16.9 °C, the lowest temperature is between -7.5 °C and -31.5 °C, the highest temperature fluctuates between 36.5 °C and 42.0 °C. In above regions an arid period which begins on May and June and ends on September and October.

Fortyfour percent of the soil in the research area is Rendsina, of the 12% is Braunerde, of the 24% is Calc Braunerde, of the 12% is Meridional Braunerde and of the 8% is Terra Rossa types of soils.

Humus reaction severe acid and light acid (pH, 5.3 to 7.6). Although the humus reaction has similar values of (pH, 5.9 to 7.4) the humus which exists under the *P. nigra* ssp. *pallasiana* var. *pyramidata* (Yücel, 1995), it is higher than the values reported for *P. nigra* ssp. *pallasiana* (pH, 4.9 to 5.5) (Kantarci, 1987).

In the needle samples the following elements are found between the values of; nitrogen 0.84 to 1.42, calcium 0.14% to 0.67%, magnesium 0.10% to 0.23%, potassium 0.42% to 1.52%, sodium 0.01% to 0.02% and phosphorus 0.05% to 0.16% ($Table\ 6$). Although the calcium and nitrogen amount found in Ebe black pine needles are about similar to the values found in $P.\ nigra\ ssp.\ pallasiana\ (Irmak\ and\ Cepel,\ 1959)$ and in var. pyramidata have the lowest value of phosphorus and the highest value of potassium (Yücel, 1995) ($Table\ 11$).

 $\it Table~11.-Nutrition~concentration~amounts~in~Pinus~nigra~ssp.~pallasiana~and~varieties.$

Taxon name	Ca %	N %	P %	K %	Literature
Pinus nigra ssp. pallasiana	0.35	1.40	0.11	0.68	Irmak and Çepel, 1959
var. pyramidata	0.29	1.36	0.49	0.70	Yücel, 1995
var. şeneriana	0,31	1.13	0.09	1.05	In this study

In the *P. nigra* ssp. pallasiana var. seneriana communities, 145 species and 242 taxons are found belonging to 46 families were found. In these communities, in general widespread and phytogeographic the region of which are not known (56.2%), are prevalent and followed by the Mediterranean elements in above communities. Three families which include the largest taxon are Fabaceae (12.0%), Lamiaceae (9.9%) and Compositae (7.9%). Families which include fewest taxons with 0.4% proportion are Aceraceae, Araliaceae, Buxaceae, Cornaceae, Dipsacaceae, Ericaceae, Geraniaceae, Illecebraceae, Lauraceae, Oleaceae, Papaveraceae, Resedaceae, Rutaceae, Scrophulariaceae and Taxaceae. Taxons (43.8%) the phytogeographic distribution of which are known and 9.1% of it is endemic for Turkey

are the elements of 12.0% Euro-Siberian, 12.8% Mediterranean and 9.9% Irano-Turanian. However, there are significant phytogeographical differences among Bolu, Manisa and Kütahya. The existent ratios of Euro-Siberian elements in Bolu and Irano-Turanian elements in Kütahya are higher than other phytogeographic region elements. While there are no Euro-Siberian elements in Alaşehir, the Mediterranean elements are of the highest ratio. Though the Irano-Turanian elements are abundant in Kütahya, the Mediterranean and Euro-Siberian ones are found rather low in ratios. When we consider Bolu, much of the flora of it is consisted of Euro-Siberian elements. Such results indicate relevance to the phytogeographic regions of Turkey (ATALAY, 1994). Families including the most endemic taxon in the research area are; Lamiaceae (Labiatae) (2.1%), Fabaceae (1.7%), Caryophyllaceae (1.2%) and Pinaceae (0.8%). When compared with the endemical ratio, they were found as 8.7% Kütahya, 2.5% Bolu and 1.7% Alaşehir. The sample area including the most endemic taxon is Yenice village of Kütahya called Çögürler region.

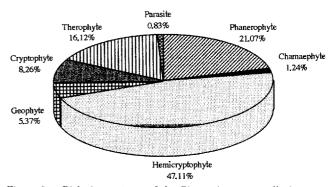


Figure 8. – Biologic spectrum of the $Pinus\ nigra\ ssp.\ pallasiana\ var.$ seneriana communities.

These communities, in general, have three-layer structure where tree, bush and grass layers are separated from each other distinctly. In these communities the hemicriptophytes (47.1%) are in majority (Fig. 8). However, phanerophytes are widespread as well. Yet, in some anthropogen areas, when the layered structure disappears and the tree level is represented by a few trees, the characteristics of bush-level communities of Quercus sp. and Juniperus sp. species become prevalent in such areas.

Only the dark coloured seeds were used in this study, due to the fact that there are large differences in germination percentages, weight and morphological properties of light and dark coloured seeds. As a result of the germination experiments, it was found out that the salt (NaCl) was not effective for germination in low concentrations (0.5%), but inhibited the germination in high concentrations. Data obtained from this study goes hand in hand with the literature (Mooring, 1971) that high salt concentrations hinder the germination. Although it is reported that KNO3 is a growth organiser and stimulates the germination for some plants (ÖZTÜRK et al., 1984), in this study it was discovered that all concentration it was inhibited the germination. As it is known, the acid rain has been an important environmental problem, and it was reported that there is a close relation with acid rain and the bad growth of P. rigida MILL., P. echinata MILL., and P. taeda L. species (JOHNSON et al., 1981). When acid rain has higher pH than 3, growth and germination of P. sylvestris L. and P. strobus L. were affected adversely (EVANS, 1982; PERCY, 1986). On the other hand, even low H₂SO₄ concentrations hinders germination of P. nigra ssp.

pallasiana var. pyramidata (YÜCEL, 1999). In this study, in accordance with the literature, the germination was inhibited by ${\rm H_2SO_4}$ in all concentrations and concentrations of 1% and grater hindered the germination completely. HCl was seen to have inhibited germination at all concentrations, and stopping at 3% concentrations.

Among origins there was difference in terms of sensitivity towards NaCl, KNO $_3$ H $_2$ SO $_4$ and HCl (*Table 10*). Whether the seed and cone weight have effect on seed germination percentages was tested through regression analysis. According to this analysis, these is no significant relation between 1000 grain seed weight and seed germination percentage ($r^2 = 0.07$). In relation to y = 0.1319 x + 94.4416 regression equation and as it is observed from F = 0.2276 and p = 0.6659 values, 1000 grain seed weight justifies the seed germination percentages. Similarly, according to y = 0.0001 x + 96.0699 regression equation, the cone weight does not justify the germination percentage (F = 0.1592, p = 0.7166, $r^2 = 0.05$).

Preserving the plant gene resources is of great importance both for the continuation of biological variety and for economy. For this reason, Ebe black pine, which is under extinction, should be urgently put under protection through a program.

Acknowledgements

I would like to thank the Board of the Research Fund of the Anadolu University (Eskişehir, Turkey) for supporting this study financially (AÜAF, 981008).

References

ALPTEKIN, Ü.: Anadolu Karaçamı (Pinus nigra ssp. pallasiana)' nın coğrafik varyasyonları. İ.Ü. Orman Fak. Derg. A 2: 132-154 (1986). Anon.: T. C. Başbakanlık devlet meteoroloji işleri genel müdürlüğü ortalama ekstrem sıcaklık ve yağış değerleri bülteni. Başbakanlık Basımevi. Ankara, 674 p. (1990). -- ATALAY, İ.: Türkiye vejetasyon coğrafyası. E.Ü.Basımevi, İzmir, Turkey. 352 p. (1994). — BEUTON, J. and WALSH, L.: Soil testing and plant analysis. Soil Science Society of America, Inc. Madison, Wisconsin, USA. 498 p. (1973). — BOUYOUCOS, C. J.: Hydrometer method for making particle size analysis of soil. Agronomy Journal 54: (1962). — BOYDAK, M.: Türkiye'de Anadolu Karaçamının yeni bir varyetesi. İ.Ü. Orman Fak. Derg. A 39: 119–129 (1989). — DAVIS, P.H.: Flora of Turkey. Vol I-I0. Edinburgh University Press, Edinburgh, Scotland (1965 to 1988). — Evans, K. S.: Biological effects of acidity in precipitation on vegetation a review. Experimental Botany 22: 155-169 (1982). — IRMAK, A. and ÇEPEL, N.: Karaçam, Sarıçam ve Göknar ibrelerindeki besin maddelerinin yıllık varyasyonları üzerine araştırmalar. İ.Ü.Orman Fak. Derg. A 2: 12–25 (1959). — JOHNSON, A. H., SICCAMA, T. G., WANG, D., TURNER, R. S. and BARINGER, T.H.: Recent changes in pattern of tree growth rate in the New Jersey pine lands: A possible effect of acid rain. Journal of Environmental Quality 10: 427–430 (1981). — Kantarci, D.M.: Toprak İlmi. İ.Ü. Orman Fak. Yay. No. 387, İstanbul, Turkey. 370 p. (1987). — Klute, A.: Methods of soil analysis I. American Society of Agronomy Inc., Wisconsin, USA. 1888 p. (1986). — Kubiena, W. L.: The soil of Europe. Thomas Murby and company, London, England. 314 p. (1953). — MIROV, N. T.: The genus Pinus. The Ronald Press Company, New York, USA. 602 p. (1967). — MOORING, M. T., COOPER, A. W. and SENECA, E. D.: Seed response and evidence for height ecophenes in Spartina alterniflora from North Carolina. Am. J. Bot. 58, 48-55 (1971). — OLSEN, S. R. and SOM-MERS, L. E.: Phosphorus. Methods of soil analysis. Part 2. Chemical and microbiological properties. Agronomy monograph no. 9. 2nd edition. ASA-SSSA, Madison, USA. 403-430 (1982). — ÖZTÜRK, M., OFLAS, S. and MERT, H.: Studies on the germination of Inula graveolens seeds. E.U. Fac. of Scie. J. B VII, 39-46 (1984). — ÖZTÜRK, M., PİRDAL, M. and ÖZDEMİR, F.: Bitki ekolojisi uygulamaları. Ege Univ. Basımevi, izmir, Turkey. 129 p. (1997). — Percy, K.: The effects of simulated acid rain on germinative capacity, growth and morphology of forest tree seedlings. New Phytologist 104: 473-484 (1986). — RICHARDSON, D. M.: Ecology and Biogeoraphy of Pinus. Cambridge University Press, Cambridge, England. 527 p (1998). — RÖHRIG, E.: Die Schwarzkiefer (Pinus nigra ARNOLD) und ihre Formen, II. Erste Ergebnisse von Provenienzversuchen, Silvae Genetica 15: 21–26 (1966). — Saatcioğlu, F.: Eine neue Varietät von Pinus nigra Arnold (Pinus nigra Arn. var. şeneriana (Saatcioglu) Zeitschrift für Weltforstwirtschaft 1: 1-6 (1955) WAKLEY, H. and BLACK, I. A.: An examination of the method for determining soil organic matter and a proposed modification of the chromic acid method. Soil. Sci. 37: 29–38 (1934). — WILLAN, R. L.: A guide to forest seed handling. Food and Agriculture Organisation of the United Nations, Rome, Italy. 397 p. (1985). — YALTIRIK, F.: Dendroloji 1 Gymnospermae. İ.Ü. Orman Fakültesi Yayınları No. 386, İstanbul, Turkey. 320 p. (1988). — Yaman, B. and Saribaş, M.: Pollen morphology of varieties of Pinus nigra ssp. pallasiana var. pyramidata growing naturally in Turkey. In: Tatli, A., Ölger, H., Bingöl, N. and Akan, H. (ed.): 1st International Symposium on Protection of Natural Environment and Ehrami Karaçam (P. nigra ssp. pallasiana var. pyramidata). Kütahya, Turkey. Pages 323-331 (1999). — YUCEL, E.: Natural distribution area and ecological features of Ehrami Karaçam (Pinus nigra ssp. pallasiana var. pyramidata). Anadolu Üniversitesi Basımevi, Eskişehir, Turkey. 153 p. (1995). — YÜCEL, E.: Studies on the ecology of seed germination of Ebe Karaçamı (Pinus nigra ssp. pallasiana var. şeneriana). Ekoloji Çevre Derg. 23: 21-26 (1997). — YÜCEL, E.: Effects of different salt and acid concentrations on the germination of Pyramidal Black Pine (Pinus nigra ssp. pallasiana var. pyramidata) seeds. In: Tatli, A., Ölçer, H., BINGÖL, N. and AKAN, H. (ed.): 1st International Symposium on Protection of Natural Environment and Ehrami Karaçam (P. nigra ssp. pallasiana var. pyramidata). Kütahya, Turkey. 722-729 (1999). — YÜCEL, E. and ÖZTÜRK, M.: A geobotanical survey of Pinus nigra ssp. pallasiana forests in Turkey. In: ASHURMETOV, O., KHASSANOV and SALIEVA, Y. (ed.): International Symposium Plant Life in South-West And Central Asia, Tashkent-Uzbekistan. 196-201 (1998). — YÜCEL, E., YALTIRIK, F. and ÖZTÜRK, M.: Ornamental plants (Trees and Shrubs). Anadolu Üniversitesi Basımevi, Eskişehir, Turkey. 183 p. (1999).

Factors Influencing Rooting in Cutting Propagation of Cypress (Cupressus sempervirens L.)

By M. CAPUANA¹), A. GIOVANNELLI¹) and R. GIANNINI²)

(Received 16th August 2000)

Abstract

Some aspects related to the rooting of cuttings of *Cupressus* sempervirens were examined in this work. They are of both scientific and practical relevance, dealing with the genetic variability of the rooting ability, the expression of this character in different periods of the year and the efficiency of the modality of hormone supplying.

A greater efficiency of indole-butyric acid given to the cuttings in the form of either potassium salt solution or talcum dispersion were found, compared to the alcoholic solution. The

Silvae Genetica 49, 6 (2000) 277

¹) Istituto Miglioramento Genetico delle Piante Forestali, CNR, Via A.Vannucci 13, I-50134 Firenze, Italy

²) Istituto di Selvicoltura, Università degli Studi di Firenze, Via S.Bonaventura 13, I-50145 Firenze, Italy