Characterization and Propagation of an Adult Triploid Pedunculate Oak (Quercus robur L.)

By G. NAUROK, H. HERTEL and D. EWALD

(Received 3rd August 1995)

Abstract

Investigations of "European oak decline" and genetic structure of more than 400 adult oaks showed that 1 tree was geneticaly variant because of unusual isozyme patterns. Further examination showed a variant leaf morphology and an increased stomatal length. Chromosome counts and isozyme analysis indicated that the tree is a triploid oak. The conservation of this remarkable genotype was achieved by rooted cuttings. The occurrence of flowering and fruit set of the adult trees offer opportunities for further research concerning problems of reproduction, genetics and stress resistance in oak with altered ploidy level.

Key words: isozyme markers, polyploidy, morphological markers, stoma, chromosome counts, rooted cuttings.

FDC: 165.3; 165.42; 165.44; 176.1 Quercus robur.

Zusammenfassung

Im Rahmen von Forschungsarbeiten zur Vitalität und genetischen Struktur an über 400 adulten Eichen fiel ein Baum aufgrund seiner ungewöhnlichen Isozym-Bandenmuster auf. Die Ergebnisse weiterer Untersuchungen zeigten eine abwe-
chende Blatt-Morphologie und erhöhte Stomata-Längen. Die Chromosomenzählung lieferte in Verbindung mit der Iso-

denymanalyse den Beweis, daß der Baum aller Wahrscheinlich-

keit nach triploid ist. Es konnten Stecklinge bewurzelt werden, um diesen besonderen Genotyp zu erhalten. Das Auftreten von Blüte und Fruchtersatz in geringem Umfang öffnet die Mög-

lichkeit für weitere Untersuchungen zu Problemen der Repro-

duction, Vererbung und Resistenz bei Eichen mit abweichendem Ploidiegrad.

Introduction

In our studies of "European oak decline" 7 adult oak stands in

eastern Germany were analysed to determine the connection between

vitality and the genetic structure at the individual and population level. More than 400 trees of pure pedunculate

oak stands (Quercus robur L.), pure sessile oak stands (Q. petraea Liebl.) and mixed stands originated from artificial

or natural reproduction were included in this investigation.

Beside several phenotypical traits of each tree, genotypes were

characterized by a set of isozyme markers.

Some altered isozyme patterns were found in 1 single tree.

These isozyme patterns pointed out to the presence of more

then the normal 2n = 24 chromosomes, because the effect was

not restricted to one gene locus.

The investigations should clarify the nature of the peculiarity

of this pedunculate oak tree.

Material and Methods

Location and plant material

Tree No. 47 was found in the forest district Chorin near

Eberswalde. The stand was established by artificial reproduc-

ion approximately 90 years ago as a mixture of 70 % peduncu-

late oak and 30 % sessile oak. The average height of the stand

was 27.8 m (MERTENS, 1994). Tree No. 47 was 27 m high with

an excellent straight stem form and a diameter of 42 cm at 1.30

m. Its crown started at 18.5 m.

Electrophoresis

The following enzyme systems and gene loci were used to

characterize the genetic structure: acid phosphatase (ACP-C),

aminopeptidase (AP-B), aspartate aminotransferase (AAT-B),

glutamate dehydrogenase (GDH), isocitrate dehydrogenase

(IDE-B), mandelone reductase (MR), NADH dehydrogenases

(NDH-A, NDH-B), phosphoglucomutase (PGM-A), 6-phospho-

glucosidase dehydrogenase (PGDH), phosphoglucose isomerase

(PGI-B). The electrophoretic methods are described in detail by

HERTEL et al. (1994). The mode of inheritance of allelic variants was

qualitatively tested with single tree offspring by the method of

FINESCHI et al. 1990 (HERTEL, unpublished).

Stomatal measurements

The leaf undersurface of mature leaves was spread with a

thin coat of clear adhesive. This peel was removed after drying

and observed with a Olympus BH2-RPCA microscope at a 400-

fold magnification. The length of 30 stomata was measured for

each of 6 trees (the test tree and 5 control trees).

Chromosome counts

Chromosome counts were made by modifying the method

developed by EPIFER (1959). In spring, young oak leaves as well

as floral stalks of male flowers collected from adult trees were

used. In early summer, fast growing root tips of one year old

cuttings were examined. The explants were fixed in 3:1 ethanol:glacial acetic acid for 30 min and stained in aceticarmine for

2 min using a microwave (900 W).

Very small pieces (nearly 1 mm²) of the leaf base, floral stalk
or root tip were squashed in aceto-carmine on microscopic slides. Metaphase chromosomes were counted at a 1000-fold
magnification. The squashes were replicated 6-fold for floral

stalks and leaf bases of tree No. 47 and 10-fold for floral stalks
of a control tree.

Cutting propagation

Fifty leafy cuttings, 10 cm in length, were harvested in July.

The 3 terminal leaves were cut in half and all other leaves were
detached. Cuttings were treated with a rooting paste containing 3-indolyl butyric acid (2 g l⁻¹) and rooted in jiffy-7

peat pellets. After placing them into a plastic greenhouse (30

cm x 20 cm x 20 cm) the cuttings were cultured under continuous red fluorescent light (35 µE m⁻² s⁻¹, fluorescent
lights LS 65 red 93; NARVA) at a constant temperature of 22

°C. After 2 months the rooted plants were counted, humidity

was reduced successively over 2 weeks and the plants were
potted in a 11 cm flowerpot.

Results

Genetic analyses by isozyme techniques

Two isozyme loci of 11 loci tested of the tree No. 47 revealed

several bands and were assigned to be heterozygous, the

remaining 9 loci with 1 single band each were homozygous.

The 2 heterozygous loci exhibited patterns which differ from

other heterozygous trees.

At the aminopeptidase locus, the tree No. 47 produced a pat-

tern with 3 bands corresponding to 3 of the 4 common alleles

B2, B4 and B7 (AP-B, Figure 1, above). At the isocitrate dehy-

drogenase locus, this individual produced a pattern with 3

bands similar to that of other heterozygous trees with the

common genotype B4B6, but with a remarkable higher staining

intensity of the band corresponding to allele B4 (IDH-B,

Figure 1, below).

Stomatal measurements

When the samples were taken from the crown of the trees

differences in the type of leaves were obvious. Tree No. 47 had

thick, nearly stiff, leather-like leaves whereas the other trees

possessed leaves of normal thickness and smoothness. The

average stomata length for tree No. 47 was 24.5 μm,

significantly differing from the other 5 trees with a stomata

length in the range from 18.2 μm to 20.1 μm. The average

stomata length determined for each tree is recorded in figure 3.
Chromosome counts

The most useful material for chromosome counts were male floral stalks. The base of young, soft leaves in some cases became recalcitrant against the squashing procedure after fixing in ethanol : glacial acetic acid. The tree No. 47 was compared with 1 control tree (No. 28) in the frequency of counted chromosome numbers (see Figure 4). It is evident that tree No. 47 was not diploid. Most frequently chromosome numbers in the range of 33 to 35 were counted. The distribution of frequencies is significantly different between the 2 trees. Tree No. 47 is in all probability triploid. Figure 5 shows cells of floral stalks of the investigated trees with a diploid (A: tree No. 28) and a triploid (B: tree No. 47) chromosome set.

Cutting propagation

Beginning with 50 cuttings, only 2 cuttings (4 %) formed roots after 2 months. The rooted plants entered into dormancy during the winter period but started to sprout in the following spring. Also the root growth and branching started anew.

It was interesting to note that the plant material harvested from the crown showed flower and fruit formation.

Discussion

Isozyme gene markers are a useful tool to describe the genetic structure of individuals and populations of forest tree species. Proteins as translation products of genes were separated by electrophoresis. Variants of genes (alleles) are visible by their banding patterns after an enzyme specific staining, if the electrophoretic mobility of enzyme proteins differ caused by different amino acid sequences. The interpretation of the banding patterns allow conclusions about gene loci and alleles. In addition to the presence or absence of bands the staining intensity can supply information about genetic structure in some cases.

Publications in the field of isozyme analyses of polyplid material often describe examples for tetraploids or offsprings of tetraploids at the species level (i.e. BOUSQUET et al., 1987; MACHON et al., 1995; BEAVER et al., 1995).

In contrast to these results, our findings refer to only 1 individual in a tree species which is normally diploid. The 2 heterozygous loci AP-B and IDH-B with atypical isozyme patterns indicated the occurrence of additional genes.

Aminopeptidases are enzymes with a monomeric structure. The locus AP-B possesses 4 common (B2, B6, B4 and B7) and some rare alleles in oak trees and is the most variable locus in this tree species. Homozygous individuals show one band and diploid heterozygous individuals show 2 bands. In case of tree No. 47 we observed the genotype B2B4B7 with 3 different alleles.

The isocitrate dehydrogenase with a dimeric structure consists of two subunits. In homozygous individuals the subunits are identical and the enzyme produces 1 band after electrophoresis. Heterozygous individuals possess 3 different kinds of dimeric enzymes: 2 identical subunits from the first or from the second allele or 2 different subunits each from 1 of the 2 alleles. The electrophoretic mobility of this "hybrid enzyme" is intermediate between the 2 enzymes with identical subunits. The staining intensity of the bands reflects the frequency of the respective dimeric enzyme. In diploid individuals the intensity of the hybrid band in the middle should be double in comparison with the outer bands (Figure 2). The common alleles at the locus IDH-B in pedunculate oak trees are B6 and B4. The genotype of tree No. 47 was designed as B4B4B6 which was concluded from the gene-dose-effect. This effect is also known from triploid offsprings from crossing experiments with diploid and tetraploid birch clones (NAULÖKS et al., 1994).

Although the possibility of duplication of at least 2 genes could not be excluded in this stage of the studies we assumed...
the existence of a further spontaneous triploid oak, since BUTORINA et al. (1983) reported about such a tree in Russia.

The real evidence for the triploid state was only given by the chromosome counts.

The use of morphological markers to characterize trees with an abnormal ploidy level is known from several publications. EiFLE (1955) described that a number of birch plants derived from colchicine treated seeds showed morphological characteristics differing from untreated seedlings. After chromosome counts it became evident that the birch trees with larger, dark green and leather-like leaves, a waved leaf surface and a strongly carved margin were tetraploids. Their stamens were significantly larger than in diploid birch plants. BRADSHAW and SERTLER (1993) worked with controlled crossings of Populus trichocarpa and P. deltoides and pointed out the increased cell size in the progeny as a marker for higher ploidy levels. KIM and LEE (1973) reported about a tetraploid Robinia tree showing very high increase in height, unusually large and dark-green leaves and very long wood fibres. Our results confirmed the applicability of morphological markers as indication for deviant chromosome numbers.

Considering the age of the donor tree, a direct formation of viable plants via cuttings without intermediate grafting steps was possible only with a very low frequency. The percentage root formation observed (4%) was similar to results described by other authors (SPETTMANN, 1986). Nevertheless it showed that a conservation and propagation of those rare genotypes for further breeding purposes is possible also from very old oak trees. The formation, growth and branching of roots formed offers new possibilities for an improved chromosome counting and analysis.

Polyploid forest trees should be used in a broader range in breeding, especially aimed at an improvement of resistance against biotic and antropogenic influences. There are several reports describing polyplloid forest trees differing in their growth habit, increase in height, type of leaves and resistance behaviour from normal diploid trees. In most cases they were discovered spontaneously like 1 triploid aspen clone found by NELSSON-ELLE (1936), 2 aspen and 2 birch trees detected as triploids by SARVA (1958) or 2 triploid pedunculate oaks examined by BUTORINA (1983 and 1993). SHERALD et al. (1994) found a naturally occurring triploid elm hybrid which was highly resistant to Ophiostoma ulmi (BUIS.) NANNF. The artificial induction of tetraploid forest trees was successful in some cases (KIELLANDER, 1959; EIPEL, 1967; JOHNSSON, 1975), but the use of these plants for a production of triploids was hindered due to a low survival rate of the tetraploids, their disturbed growth habit and the lack in flowering.

Observing a fruit formation at the described tree of pedunculate oak seems to contradict the widespread opinion that triploids are often sterile. On the other hand the fertility of this tree offers new possibilities to get a broad genetic variation in the offsprings which could be a valuable tool for breeding (GERHARDT, 1988).

The conservation and propagation of such extraordinary genotypes could create new initial positions for research, first by the production of genome mutants and the observation of performance and resistance for example, and second by improving our knowledge about chromosome effects in plants supported by modern molecular techniques now.

Acknowledgements

The authors would like to thank Mrs. I. EIPEL for fruitful discussions and her support in developing ideas concerning the utilization of polyplloid forest trees.

Figure 4. – Frequency of chromosome numbers counted in leaf base and floral stalks of 2 pedunculate oaks.

Figure 5. – Cells of floral stalks of the investigated trees with diploid (A: tree No. 28) and triploid (B: tree No. 47) chromosome set.
References

I Isozyme Gene Loci and Their Allelic Variation in Pinus sylvestris L. and Pinus cembra L.)

By F. BERGMANN and H. H. HATTEMER

Abteilung für Forstgenetik und Forstpflanzenzüchtung, Georg-August-Universität, Büsgenweg 2, D-37077 Götingen, Germany

(Received 3rd August 1995)

Summary

The genetic structure and variation of 5 Scots pine (P. sylves- tris L.) and 4 Swiss stone pine (P. cembra L.) populations was compared using allele frequency data from the same isozyme- gene-systems. Differences between the 2 pine species belonging to the subgenera Pinus and Strobus, respectively, concern both the number of controlling gene loci and the number and frequency of alleles. Although Scots pine is characterized by larger populations and a wider natural range than Swiss stone pine, the genetic diversity values did not generally differ to a similar degree or in the direction expected. While Scots pine possesses higher diversity at several enzyme loci, Swiss stone pine reaches the same degree of diversity or even a higher degree at other loci. Interestingly, the greatest differences in gene diversity between the 2 pine species were detected for isozyme-gene- systems that differ in the number of controlling loci, suggesting that variable allozymes at only 1 (or 2) loci and invariant isozymes at multiple loci are alternate forms of enzyme adaptation in the 2 species. The relationship between such adaptive strategies at the enzyme level and the ecological conditions and life history traits of the 2 species are discussed.

Key words: Pinus sylvestris, Pinus cembra, isozyme loci, genetic diversi- ty, adaptive strategies.

Introduction

Most European pine species differ greatly in the sizes and geographic locations of their natural ranges. Whereas Scots pine (Pinus sylvestris, section Pinus, subgenus Pinus) is one of the most widely distributed conifers in central, northern and eastern Europe, Swiss stone pine (P. cembra, section Strobus, subgenus Strobus) is restricted to the high elevations of the Austrian and Swiss Alps, the Eastern Carpathians, and the High Tatra Mountains (Holzer, 1975). Therefore, it appears to be worthwhile to compare the types and amounts of genetic variation between these 2 pine species.

Extensive studies on the genetic diversity and differentiation of Scots pine have been carried out by, among others, GULBERG et al. (1985), MEINARTOWICZ and BERGMANN (1985), PIUS- Glowacki and STEPHAN (1994) and GONCHARENKO et al. (1994), whereas Swiss stone pine populations have been investigated only by SZMIER (1982). Russian research groups have compared different stone pine species of the subsection Cembrae, section Strobus, which occupy a large part of the Eurasian area of the former Soviet Union (GONCHARENKO et al., 1992; KRUTOVSKY et al., 1995).

1) Dedicated to Prof. Dr. G. H. MICHLICH on his 70th birthday.

Silvane Genetica 44, 5-6 (1995)