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Summary

Resin composition can be quantified with relative ease
but, because of the properties of proportional data., anal-
ysis and interpretation of patterns of variation in the
resultant compositional data sets are rather less easy.
Proportions of a composition are constrained to sum to
unity; individual proportions are not, therefore, indepen-
dent variables, and cannot be analyzed as such. Resin data
shares with other compositional data sets various analyt-
ical and interpretative difficulties: a major limitation for
taxonomic, genetic and biosynthetic studies is the absence
of any interpretable covariance structure for proportional
data sets.

A valid approach to the interpretation of resin composi-
tional data is through the analysis of ratios of proportions
of a composition, which have the essential property of
being invariant under rescaling. Transformation of the
proportional data to a logratio data set allows the proper-
ties of the lognormal distribution to be employed; the
logratio transformation removes the constraint of sum-
mation to unity, and provides an interpretable covariance
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structure. The logratios form a multivariate data set
amenable to analysis using standard techniques, which
we demonstrate for a sample set of resin compositional
data.

Key words: Compositional data, genetic markers, monoterpenes,
oleoresin.

1. Introduction

In our earlier critique of the interpretation of resin
compositional data (Birks and KaNowski, 1988), we review-
ed the relevant literature over the 2 decades preceding
1986. 1t was in this era, subsequent to HanNovERr’s (1966a
and b) reports of monogenic control of monoterpene levels
in Pinus monticola DoucL., that there was most enthusiasm
for genetic investigations of resin composition. The sub-
sequent advent of isozyme (Brown and Moran, 1981; YEs,
1989; Muona, 1990) and molecular (Cueriak and ROGERs,
1990; NearE and WirLiams, 1991) techniques, with their
apparently more direct association with the genome, has
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reduced the level of interest in resin composition in taxo-
nomic and genetic studies. Nevertheless, as evident from
Hanover’s (1992) recent review, our increasing under-
standing of the biosynthetic pathways leading to resin
production (BERNARD-DAGAN, 1988), the apparent utility of
terpene data in assisting taxonomic studies (Apawms, 1989;
Hunt et al., 1990; LockHarT, 1990; Fapy et al.,, 1992; CooL
and Zavarin, 1992) — where it may play a role comple-
mentary to other techniques (voN Ruprorr and Larp, 1991),
implications of associations between terpene composition
and pest or disease resistance (Brooks et al., 1987; MicHE~
Lozzi et al., 1991), and the tantalising prospect of establis-~
hing the mode of genetic control of resin composition
(BAarADAT and Yazpani, 1988; ZavariN et al., 1990), suggest
that it is worth attempting to resolve the difficulties in-
herent in the acquisition and analysis of such data. While
issues relevant to data acquisition have been acknowled-
ged and addressed (Rara and STEFFECk, 1988; Muzika et
al, 1990), those inherent in analysis and interpretation
remain, with few exceptions (Barapar and Yazpani, 1988;
Muzika et al., 1990), unacknowledged. In our 1988 paper,
we suggested a variety of quantitative methods which
might be developed to assist the interpretation of compo-
sitional data. The purpose of this paper is to remind those
working on the topic that use of “standard” analyses will
seldom be valid (Arrcuison, 1984), and to demonstrate
quantitative methods that are appropriate to the analysis
and interpretation of data describing resin composition.

2. The Nature of Resin Data

As most work has been concerned with the composition
of coniferous resin, we shall use the term “resin data” as a
rubric, to refer to any which describes the composition of
plant resins or essential oils, including those from non-
coniferous species (SmitH et al., 1988; BarToN et al., 1991).
The results of gas-chromatographic analysis, on which
these studies are based, can be reported in a number of
forms (SQuiLLACE, 1976; Wurre and NiLssoN, 1983; Birks and
KanNowskl, 1988); the quantity of each constituent can
be expressed as:

1. a proportion of total resin (Scuonwrtz et al., 1990);
2. a proportion of comparable constituents (of all mono- or

sesqui-terpenes; Fapy et al., 1992);

3. weight per unit volume of resin (mg/ml; Cuanc and

HANOVER, 1991);

4. weight per unit weight of tissue (ug/g fresh weight;

Scuoénwitz et al., 1990).

Appropriate analyses and interpretation of resin data are
not independent of the form in which they are reported
(SQuiLLAck, 1976; WHiITE, 1983; BaraDpAT and Yazpani, 1988;
Birks and Kanowski, 1988; ScuonwiTz et al., 1990); 1 of the
limitations of too many papers in the subject area is their
imprecision about the form in which the data were ex-
pressed, with consequent ambiguity about the results
reported.

Most studies have been based on proportions of com-
parable constituents or on weight per weight of tissue,
generally described as proportions and absolute amounts,
respectively. These data have been used for a number of
purposes:

1. to investigate biosynthetic processes (BERNARD-DAGAN,

1988; CooL and Zavarin, 1992);

2. to assist taxonomic study (Forrest, 1987; voN RuDLOFF

and Larp, 1991; CooL and Zavarin, 1992; Fapy et al., 1992;

SquiLLACE and PErry, 1992);

3. to infer mechanisms of genetic control and frequencies
of genotypes (BarapaT and Yazpani, 1988; ZAvARIN et al.,
1991; review by Birks and Kanowski, 1988).

The utility of the different forms of resin data varies
with the purpose of analysis. The prevailing paradigm,
expressed by WHiTe and Nitsson (1983), HarsoNE and Tur-
NER (1984), HaLL and LANGENHEIM (1987), or Scuonwitz et al.
(1990), is summarized in the words of the latter: “terpene
variability based on relative amounts is probably due to
genetic variation, while the variability of absolute amounts
will reflect environmental factors”. For this reason,
taxonomic and genetic studies have been based almost
exclusively on proportional data, although Cuanc and
HanNover (1991) have suggested that “the absolute amount
of monoterpenes is a more sensitive method to analyze
species with a homogenous terpene composition pattern“.
However, the constraint, 2'(proportions) = 1, inherent in
proportional data, limits its utility for other purposes — in
the investigation of biosynthetic processes, for which WurITE
(1983) found that the effect of “expressing results as per-
centages . . . was to obscure possible biosynthetic rela-
tionships”, and in quantitative genetic studies where, as
BarapaTr and Yazpani (1988) noted, “autocorrelations be-
tween terpenes may cause some bias in estimates of ge-
netic parameters”. The considerable difficulties inherent
in defining segregating characters from resin compositional
data, especially in the case of proportional data, have also
been reviewed, by WurteE and Niusson (1983) and Birks and
KaNowskI (1988). The cautionary words of Muzika €t al.
(1990), that “researchers studying monoterpenes should
closely assess the technique appropriate for a given species
as well as direct the analysis towards the questions ad-
dressed“, are pasticlilarly apposite, but there is little
evidence that they have been acknowledged, much less
heeded, by some workers.

We assume here that proportional (or, in AITCHISON’S
(1984) terminology, compositional) data will continue to
be that of most interest for forest taxonomists and ge-
neticists; those more concerned with biosynthetic path-
ways will doubtless favour data expressed in “absolute”
terms. Recent taxonomic and genetic studies based on resin
data, almost invariably expressed as proportions, have used
a variety of the standard techniques of numerical taxo-
nomy: various discriminant analysis (ScHiLLER and GRUN-
waLD, 1987; voN Ruprorr et al., 1988; Zavarin et al., 1989,
1990, 1991; CooL et al., 1991; CooL and ZAvARIN, 1992; Fapy
et al., 1992), principal component analysis (Barabat and
Yazpani, 1988; voN Ruprorr et al, 1988; CooL et al., 1991;
Fapy et al, 1992; SouiLLice and Perry, 1992), cluster anal-
yses (ScHiLLER and GRUNwALD, 1987; BarapaTr and YAzZDANI,
1988; Scuonwitz et al, 1990; CHanG and Hanover, 1991;
voN Ruprorr and Larp, 1991), and uni- and multi-variate
analyses of variance (BarapaT and Yazpani, 1988; MicHE-
rozzi et al, 1990; Cuanc and HaNoVER, 1991; ZavariN et al,,
1991; Fapy et al., 1992). In Arrcuison’s (1984) terminology,
these are “standard” methods which are “improper and
inadequate” if applied to compositional date. ArrcHison’s
(1984) exposition of the nature of compositional data and
of the dangers of its simplistic interpretation is so clear
and concise that we can not do better than to refer the
reader to it. He noted 3 major interpretative difficulties
in such data — their high dimensionality, the absence of an
interpretable covariance structure, and the limits of para-
metric modelling applied to them — and suggested how
these might be addressed. He noted that the work of geo-
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logical researchers, at whom his entreaties were directed,
had taken little cognizance of the nature of their com-
positional data sets; regrettably, it appears that the same
criticism applies to most scientists working with resin
data. In the following sections, we explain ArrcHIisoN’s (1984,
1986) proposals for more appropriate analytical methods,
and apply them to examples of resin compositional data.

3. Issues in the Analysis of Compositional Data

Compositional data with n observations of an m-part
composition are subject to the constraint:

Xg+ . +x, =1 1)
where x;; is the proportion of constituent j in sample i.
Each data vector is-eompletely specified by m-l1 com-
ponents. The appropriate sample space for the m-part
composition is the (m-1) dimensional simplex embedded in
m-dimensional Euclidean space. A simple example of a
simplex is the 1-dimensional simplex, the line x; + %, =1,
on which would be found all possible compositions with
only 2 components. This line is embedded in 2-dimensional
Euclidean space, but x, and x, are not free to roam over
this space.

The effect of this constraint is to limit severely the
utility of standard statistical procedures applied to these
raw proportions.

3.1 Correlations between proportions

The correlations between the proportions, which are the
basis of inferences about biosynthetic pathways and their
genetic control (Lapp and voN RubpLOFF, 1982; BERNARD-
DacaNn, 1988; CHaNG and HaNoOVER, 1991; CoorL and ZAVARIN,
1992), do not have a simple interpretation. The constraint
places restrictions on the correlations, giving a bias to-
wards negative values. This is most easily appreciated
in the 2 component case where the correlation can only be
—1 instead of being free to range from —1 to +1.

3.2 Subcompositions

It is possible to extract, from all terpenes that constitute
the resin, subsets which are of particular interest. There
are many justifiable reasons for studying subcompositions,
and indeed the monoterpenes themselves are a subcomposi-
tion of the resin, but the use of subcompositional data
further complicates the analysis and interpretation of
compositional data, for 2 reasons.

The first is the form in which subcompositional data are
expressed. The proportion of each constituent of a sub-
composition may be expressed as that of the whole com-
position (ie x;; as defined in Equation 1; Scudnwirz et al.,
1990; Coor and ZAvARrIN, 1992), or the original proportions
may be rescaled so that the components of the subcom-
position sum to unity (Lapp and voN Rubprorr, 1982). There
is no functional relationship between the 2 subcomposi-
tional data sets, nor is there any presumptive reason for
giving preference to 1 form.

A related issue concerns the absence of any functional
relationships between the variances and the covariances of
subcompositional data sets expressed on different bases.
The 2 subcompositional data sets described in the para-
graph above would have different, functionally unrelated,
covariance matrices, although each purports to describe
the same subcomposition.
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3.3 The lognormal distribution

Valid methods of analysis of compositional data must
resolve the difficulties described above. The simplex,
within which proportional data are constrained, is difficult
to work with. Although no classes of distributions have
been discovered which describe the variability observed
in untransformed compositional data, the class of additive-
logistic normal distributions has been found to be useful
and tractable (ArrcHison, 1986).

In order to simplify notation subsequently, we redefine
x; to be the proportion of constituent i in any given
sample. As above, 2x; = 1. The data matrix x has a
lognormal distribution if the logratio vector:

Yy = log.(x/x;), i #j )

has a m-1 dimensional normal distribution, Nd(x,3). The
logratio transformation removes the constraint Xx; = 1,
but imposes the additional restriction that x; > 0,i = 1,

The logratio transformation confers the important pro-
perty on constituents of independence of subcomposition,
because the ratio of 2 components is invariant. This pro-
perty is essential if robust inferences are to be drawn re-
garding, for example, biosynthetic pathways or the nature
of the genetic control of the resin composition.

The 2nd relevant property of logratios concerns the set of
variances of and covariances between logratios, termed the
covariance matrix. The covariance matrix is important
as it has a central role in the multivariate procedures ap-
propriate for the interpretation of logratio data sets.

3.4 The covariance structure of a composition

It is possible to define m(m-1)/2 logratios for an m-part
composition, and the covariance structure is based on the
set of covariances:

3
cov{log(x/xy, logx/x)} ij.kl = 1,...m.

It appears from equation (3) that there are m¢* covari-
ances, but it can be shown that they are not independent
of each other and that the complete set can be constructed
from the set of logratio variances (ArrcHison, 1986):

)

There are other covariances that can be defined; Arr-
cHISON (1986) explored the range of possibilities and set
out the relationships between the various forms. One form
is the logratio covariance matrix, 2, which completely
defines the covariance structure of a composition:

&)

2 = [o;] = [cov{log(x/xy, log(x/X)}],

v; = var{log(x,/x)}

ij = 1,..(m-1).
Any variance or covariance of logratios can be con-
structed from 2 by using the relationship:

©)

cov{log(x/x),log(xy/x)} = 0y - 0y - Ox + 0y



A second form is described as the logcentred covariance
matrix:

(7
T = cov{log(xi/g(x)),log(xj/g(x))], i,j = 1,..m.

where g(x) is the geometric mean of the m proportions of
the composition:

g = (x..x)" ®)

It may appear from the above that x,, has been given a
special place in the definition of the logratio covariance
matrix, but it can be shown that the results of any multi-
variate procedure used in this paper are invariant under
any permutation of the components (Arrcuison, 1986).
2 and I' are functionally related and, therefore, can be
used variously, depending on the purpose of the analysis.

3.5 Zero proportions

Logratios involving a particular constituent cannot be
calculated if the proportion of that constituent is zero.
Zero values may be due to amounts so small that they
are not detected, or to a compound not being present;
both cases may have important implications, and are
common in resin data sets.

It is necessary to restrict analyses based on logratios to
subcompositions with no zero values. The information from
data sets which include zero values should not be dis-
carded, but different forms of analysis are required for
those data sets in which not all components are present in
all samples. A data set recording the presence or absence
of components could be analyzed, for example, using pro-
cedures based on contingency tables to investigate associa-
tions between the absences (Everrrr, 1977).

3.6 The analysis of a compositional data set

If the set of logratios has a multivariate normal distri-
bution (Arrcuison, 1986), the whole range of procedures
based on multivariate normality becomes available.

The first step in the analysis of compositional data is to
calculate the set of means and variances of the set of
logratios that define a group of individuals, be that group
a provenance, family, or clone. This is a descriptive device
that allows patterns of variability to be explored. The next
step is to reformulate the problem to be addressed in
terms of the logratios, and to make use of standard

multivariate procedures. Artcuison (1986) recommended the
use of the logratio covariance matrix for this purpose.

4. Illustrative Examples

These methods are demonstrated below using data from
2 experiments of Pinus elliottii var elliottii LittLE and
DormaN growing in Zimbabwe. The number of observa-
tions is not extensive, but these data sets were chosen to
provide clear and simple examples of the appropriate
methodology for the analysis of resin compositional data.

4.1 Experimental material and analytical procedures

Samples of xylem resin were collected from 2 sets of
material, a progeny trial and a clonal seed orchard, in
the Zimbabwean P. elliotii breeding programme (BARNES,
1986). Three full-sib families were sampled in the progeny
trial; by chance, they had the same female parent, and
were identified locally as families 22 x 49, 22 x 130, and 22
x 173. The families had been established 15 years pre-
viously in an experiment replicated at 2 sites, identified
as A and B, in the Eastern Highlands of Zimbabwe. The
experiments had previously been thinned silviculturally;
at the time of sampling, 3 trees remained in each of 3
replications at each site. Samples were collected at a
height of 0.5 m.

Xylem resin of ramets of the male parents of the full-sib
families (parents 49, 130 and 173) was also sampled, from
2 seed orchards in Zimbabwe’s Eastern Highlands. Samp-
les were collected at breast height from each of 10 ramets
in line plots of each clone, in each of the 2 orchards, also
identified as A ‘and B, 13 years after grafting.

Samples were taken on the north side of all trees. The
procedures and equipment used to collect, store and
analyze samples were those described by LockHARrT (1990).
Data were reported as proportions of all terpenes detected.

The following terpenes were detected in measurable
quantity in some or all samples: o-pinene, camphene,
f-pinene, sabinene, myrcene, a-phellandrene, A-3-carene,
limonene, p-phellandrene, terpinolene, estragole, and
caryophyllene. Other terpenes — sabinene and terpinolene
— were present in trace amounts, but not in every sample.
Analyses of the clonal and family data sets were restricted
to the subcompositions of monoterpenes present in samples
of that data set: these subcompositions, which are identi-
fied in table 1, comprised 8 components in the case of the

Table 1. — Monoterpene constituents used in analysis of subcompositions.

Monoterpene Component
Progeny trial Clonal orchard
a-pinene x; X,
camphene x; X2 II
f-pinene X5 X3
myrcene Xy Xy ||
limonene Xg Xy
f-phellandrene X X
estragole x; X,
a-phellandrene - Xg
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Table 2. — Percentages of 8 monoterpenes in the terpene component of the oleoresin of 3 clones at 2 sites (A and B).

site & a-pinene camphene  B-pinens myrcene limonene B-pheliandrene estragole a-pheliandrene
clone
A 49 54.74 0.89 5.69 1.34 1.13 33.13 1.50 0.78
53.28 0.86 7.12 1.33 1.12 33.24 1.67 0.78
50.74 0.86 6.06 1.42 1.22 36.10 1.78 0.86
50.59 0.90 7.23 1.40 1.21 34.57 2.57 0.86
60.72 0.84 6.21 1.19 0.95 27.95 1.03 0.62
36.47 0.71 32.92 1.38 112 25.70 0.40 0.67
65.64 0.76 7.28 1.13 0.98 25.68 1.36 0.63
73.13 2.08 11.36 1.56 1.01 7.79 1.02 0.18
64.27 0.80 453 1.23 0.95 31.12 1.74 0.72
53.79 0.82 5.83 1.24 0.94 30.94 1.22 0.72
A [~ 18.22 0.71 23.04 1.69 1.39 49.93 2.29 1.20
15.10 0.57 35.83 1.51 .21 38.79 1.33 0.94
15.84 0.64 24.65 1.57 1.36 45.16 1.89 1.07
16.13 0.65 24.90 1.58 1.91 45.09 1.81 1.08
17.84 0.66 22.47 1.61 1.31 46.49 2.51 1.12
19.33 0.69 2111 1.65 1.52 49.26 1.98 1.19
19.61 0.69 24.65 1.65 1.49 47.10 1.09 1.15
19.68 0.72 19.73 1.66 1.54 50.86 2.02 1.18
17.28 0.63 27.63 1.55 1.42 43.59 1.04 1.06
17.88 0.68 25.50 1.64 1.37 46.45 1.43 1.15
A 173 29.66 0.66 42.44 1.21 1.17 19.66 2.05 0.42
20.04 0.40 38.48 1.54 1.30 33.43 0.72 0.85
26.63 0.65 42.05 1.30 1.01 24.12 2.19 0.58
31.40 0.67 36.93 1.29 0.94 22.45 1.51 0.52
22.67 0.55 4253 1.24 1.1 23.16 1.54 0.55
20.82 0.59 38.33 1.26 1.28 27.58 1.48 0.60
33.62 0.64 41.98 1.03 1.03 12.67 1.17 0.28
33.59 0.63 42.30 1.05 0.73 14.31 1.26 0.31
35.76 0.68 43.18 1.14 1.13 14.05 2,75 0.33
31.18 0.67 36.84 1.25 1.10 22.07 2.27 0.51
49 | 50.87 0.95 3.96 1.41 1.13 34.69 2.85 0.81 |
51.21 0.96 4.88 1.46 1.19 34.79 2.59 0.85
66.75 0.89 6.35 1.28 1.06 29.51 2.23 0.67
50.79 1.00 5.60 1.49 1.1 34.35 3.28 0.83
51.66 0.96 6.40 1.50 1.12 33.96 1.82 0.84
52.34 0.96 10.16 1.38 1.14 29.13 2.89 0.67
61.60 0.93 6.28 1.40 1.02 31.03 3.91 0.75
51.35 0.93 6.01 1.48 1.24 33.28 3.26 0.84
47.01 0.94 8.07 1.60 1.20 34.31 1.73 0.93
B 130 24.35 0.76 24.52 1.76 1.37 41.52 2.72 1.15
25.76 0.76 26.86 1.69 1.32 38.81 1.90 1.07
265.15 0.80 25.13 1.77 1.36 39.98 1:92 117
26.59 0.80 22.45 1.73 1.30 41.93 2.28 1.15
21.48 0.73 27.65 1.68 1.40 43.30 1.47 1.12
22.35 0.75 32.99 1.77 1.31 37.34 1.75 1.0
26.75 0.83 265.51 1.79 1.18 39.69 2.03 1.1
27.03 0.87 22.74 1.87 1.32 41.53 1.75 1.22
23.55 0.83 23.45 1.92 1.32 44.26 2.11 1.31
25.52 0.83 25.37 1.86 1.44 40.93 1.74 1.22
B173 33.256 0.73 35.35 1.39 0.98 22.18 3.47 0.55
30.07 0.66 42.46 1.36 1.54 19.30 2.10 0.48
32.38 0.81 38.92 1.52 1.28 19.28 3.20 0.49
31.78 0.71 39.72 1.39 1.30 19.38 2.38 0.51
29.09 0.69 35.49 1.36 1.24 23.12 2.75 0.59
28.39 0.73 38.85 1.56 1.23 23.05 2.78 0.63
30.79 0.79 37.40 1.50 1.19 21.69 3.95 0.57
25.87 0.64 37.73 1.35 1.22 23.28 2.94 0.59
29.91 0.79 34.27 1.56 1.04 25.27 3.28 0.7
40.67 0.79 37.45 1.23 1.40 13.13 37 0.39

seed orchard, and 7 in the case of the progeny trial. These
data sets are presented as tables 2 and 3, respectively.
The mean and variances of logratios between the 8 or 7
components in the subcomposition formed the summary
data sets, and are presented in tables 4 to 7. Examination
of tables 4 to 7 shows some features of the compositions
that might command our attention. There are logratios, for
example those of a-pinene to camphene, that are reason-
ably constant across site and clone, or across site and
family. This .consistency would not have been apparent
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from the compositional data, as the proportions of a-pinene
and camphene vary quite widely in the data sets, as evident
from tables 2 and 3.

It is also apparent from tables 4 to 7 that the variation
within families is greater than that within clones. The
mean logratios are more consistent across the families,
which are all half-sibs, than across the clones, which
are unrelated. The logratios appear to be similar across
sites for the same family or clone.



Table 3. — Percentages of 7 monoterpenes in the terpene componentof the oleoresin of 3 families at 2 sites (A and B).

site & rep tree a-pinene camphene B-pinene myrcene limonene B-phellandrene estragole
family
A 1 1 81.54 1.07 B8.80 1.1 0.72 0.81 0.70
22x49 2 68.29 1.14 25.36 1.12 0.88 1.86 1.03
3 41.14 0.70 23.53 1.38 0.81 26.18 4.20
2 1 49.36 0.76 22.72 1.01 0.59 19.18 0.97
2 75.23 1.13 17.00 0.73 0.78 1.72 0.67
3 56.59 1.01 30.28 0.92 0.80 8.44 1.28
3 1 71.36 1.70 21.29 1.56 1.40 1.69 0.46
2 71.90 1.14 19.84 1.08 0.92 2.06 1.12
3 65.16 1.34 24.26 1.38 1.05 2.29 2.43
A T 1 59.39 0.95 43.26 138 1.14 8.97 2.13
22x130 2 68.27 1.32 25.28 1.20 1.10 2.03 0.48
3 77.32 1.87 13.49 1.60 0.63 1.07 1.86
2 1 74 .52 1.43 20.02 1.32 0.58 1.29 0.51
2 62.97 1.16 28.89 0.44 0.55 0.58 1.05
3 77.62 1.28 11.19 0.92 0.50 2.93 462
3 1 78.17 1.16 13.74 0.87 0.94 1.75 2.87
2 67.67 1.43 24.89 1.32 1.18 1.76 0.70
3 §7.37 1.58 22.32 1.88 1.19 11.80 1.78
A T 7 5159 0.93 39.34 T13 T.07 ~ 3.89 156
22x173 2 64.53 1.17 19.16 1.19 0.99 11.28 0.95
3 61.91 0.87 25.46 0.81 1.06 1.60 1.76
2 1 62.52 1.24 30.57 0.87 0.90 1.09 1.27
2 58.66 1.23 34.28 1.20 1.23 1.42 1.37
3 69.64 1.58 22.75 1.30 0.77 0.81 2.15
3 1 87.22 1.61 6.50 1.46 0.69 1.03 0.75
2 77.91 1.34 14.94 1.23 1.92 0.63 0.58
3 67.10 1.29 24.60 1.14 1.08 1.70 1.03
B | i —80.54 098 3.05 0.583 0.66 0.44 30
22x49 2 80.54 1.60 9.55 1.44 1.05 1.46 3.20
3 68.66 0.94 25.06 0.86 1.53 0.80 2.15
2 1 70.33 1.05 14.27 1.09 11.96 0.94 0.10
2 92.38 0.83 3.89 0.66 0.55 0.51 0.78
3 90.34 1.26 4.81 0.90 0.85 1.01 0.84
3 1 70.47 0.86 24.06 0.83 0.88 0.86" 2.03
2 88.77 1.07 5.66 0.82 090 0.60 2.18
3 71.93 0.87 23.59 0.67 0.98 0.62 1.40
B | 1 7733 0.10 1852 0.10 249 1.66 0.70
22x130 2 83.66 117 9.02 1.07 2.63 0.93 1.52
3 75.59 1.14 19.59 0.87 1.39 1.06 0.36
2 1 76.97 1.17 16.51 0.92 1.58 0.96 1.89
2 78.58 1.07 9.78 0.91 5.45 0.79 2.86
3 69.02 0.76 19.47 0.88 6.25 0.92 2.70
3 1 72.73 0.98 20.52 0.10 1.56 1.30 291
2 71.10 1.04 16.65 0.94 2.20 1.09 2.60
3 75.04 1.01 17.87 0.95 2.69 1.01 1.43
B 1 1 70.08 1.12 24.76 0.95 1.40 0.80 089 |
22x173 2 74.17 1.08 20.83 0.89 1.03 1.10 0.91
3 65.06 1.00 29.39 0.83 1.41 1.24 1.08
2 1 83.64 1.12 7.12 0.91 1.42 0.95 1.37
2 65.03 0.95 29.55 0.95 1.67 1.03 0.82
3 73.51 1.01 21.41 0.88 1.13 0.80 117
3 1 69.22 0.99 25.77 0.88 1.59 0.87 0.51
2 83.26 1.43 10.87 1.23 1.61 1.04 0.45
3 69.73 1.04 24.16 0.68 1.13 1.01 0.74

By investigating different subcompositions it is possible
to discover those responsible for the variation observed in
the total composition. The percentage variation of three-
component subcompositions compared to the 8-component
composition for the 3 clones is shown in table 8. These
results suggest that dimension-reducing procedures, such
as principal component analysis or canonical variates
analysis, could be useful.

The next stage is to redefine the particular problems
in terms of the logratio covariance structure and to apply
the appropriate multivariate procedure.

4.2 An example of discriminant analysis

As we noted in 2. above, many resin compositional data
sets are used in taxonomic studies, in which standard

multivariate methods, such as principal component or
canconical variate analysis, are used to discriminate be-
tween samples. These multivariate methods depend on the
assumption of multivariate normality, although they are
fairly robust to small departures from it. There is also an
assumption of homogeneity of covariance across groups.
When these procedures involve the comparison of means
and covariance matrices then significance levels are only
valid when the distributional assumptions apply. These
assumptions have not been tested in most analyses of resin
compositional data, and are unlikely to hold considering
the variety of distributions evident in resin data sets, and
the prevalence of multimodal distributions (from which
single gene control has been inferred).
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Table 4. — Mean logratios between 8 components of 3 clones at 2 sites (A and B).

“sm A B A B A B
Clone 49 49 130 130 173 173
log(X,/x,) 4.08 4,00 3.28 3.44 3.83 3.7 [
log (x,/x;) 1.93 2.12 -0.34 -0.03 -0.37 -0.20
tog(x,/x,) 37 3.58 2.39 2.63 3.13 3.09
1og (%,/x) 3.93 3.81 2,50 2.92 3.27 3.22
logix,/xg) 0.69 0.45 -0.96 -0.50 0.31 0.40
log(x,/x;) 3.72 2.97 2.36 2,55 2.87 2.33
log (X,/xg) 4.43 4.17 2,76 3.07 4.09 4.04
log (x2/Xs) -2.15 -1.88 -3.62 -3.47 -4.20 -3.94
log(Xa/x,) -0.38 -0.42 -0.89 -0.81 -0.70 -0.66
log(xa/Xs) -0.16 -0.18 -0.78 -0.62 -0.56 -0.52
log(X,/X) -3.39 -3.54 -4.24 -3.94 -3.52 -3.34
log(Xa/x;) -0.36 -1.03 -0.92 -0.89 -0.96 -1.41 “
1og (X2/Xs) 0.35 . 0.18 -0.52 -0.37 0.26 0.30
log(xy/X,) 1.77 1.46 2,73 2.66 3.50 3.28
log (xy/xg) 1.99 1.70 2.84 2.95 3.64 3.42
log (X5/X) -1.24 -1.66 -0.63 -0.47 0.68 0.60
log (Xa/X;) 1.79 0.85 2.69 2.58 3.24 2.53
109 (X3/xe) 2.50 2.06 3.10 3.09 4.46 4.24
tog (X4/xs) 0.22 0.24 0.11 0.29 0.14 0.14 "
log (X,/xg) -3.01 -3.12 -3.36 -3.13 -2.82 -2.68
log(x4/x;) 0.01 -0.60 -0.04 -0.09 -0.26 -0.75
109 (X4/%g) 0.73 0.60 0.37 0.43 0.96 0.96
log (xg/Xe) -3.23 -3.36 -3.47 -3.42 -2.95 -2.82
log (xs/x;) -0.21 -0.84 -0.15 -0.38 -0.40 -0.89
log(Xg/xg) 0.51 0.36 0.26 0.14 0.82 0.82
log (xg/x;} 3.03 252 3.32 3.06 2.56 1.93
og(xe/Xe) -0.51 -0.36 -0.26 -0.14 -0.82 -0.82
109 (%,/X) 0.7 1.20 0.41 0.52 1.22 1.71

Table 5. — Variances of logratios between 8 components of 3 clones at 2 sites (A and B).

Site A B A B A B
Il Clone a9 a9 130 130 173 173
log (xy/xg) 045 7006 ~002 ~003 018 )
log ix,/x) 447 .077 .058 .030 .041 .019
log(x,/%) .037 012 .004 .006 .093 028
log (x,/xs) .056 .009 019 012 115 026
log(x,/%g) .319 012 .003 010 .268 .085
log (x,/%,) 212 073 .095 .026 119 024
log (/%) .339 023 .002 .009 .288 072
toglxa/x,) .379 076 052 024 026 014
logxa/x,) .060 .003 .001 .001 064 .008
log{xa/xs) 104 .003 013 .008 077 .029
10g(Xy/Xe) 528 .004 .000 004 187 049
log (xa/%) .331 .074 .081 .030 .080 .023
100 (%/%e) .545 o1 .000 .002 .219 037
10g(x3/%,) .281 .075 .037 018 025 o1
10g(X5/xs) .299 077 .059 .015 .037 .008
log(Xy/%e) .702 .101 .057 .023 126 .046
log(xa/x,) 1.025 .183 .180 .059 .146 .058
10g (%y/%s) 675 105 .054 028 .148 042
log (Xa/%s) .008 .003 014 .005 019 .032
100 (x4/xe) .252 002 .002 .003 044 .021
log (xa/x) .263 .091 .086 .030 .192 .042
log(Xe/%e) .259 004 .002 .002 .066 .016
log (xe/x) .185 .004 014 004 .068 .080
log (xe/%) .237 .087 .102 .036 .185 .083
log(xe/xe) .188 .008 014 .005 .083 073
log (xe/x;) .290 .088 074 .030 .324 .082
togixe/x,) .002 .003 .000 .002 003 .003
log (x,/%e) .313 .107 .080 030 .354 .066
total variance 8.381 1.320 1.104 452 3.395 1.096

There is little point in attempting to use a dimension above, further difficulties should have been evident to
reducing technique unless there are high correlations be- those attempting to calculate the correlation matrices
tween some of the original variates. As discussed in 3.2 wusing the raw proportions, as illustrated empirically in the
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Table 6. — Mean logratios between 7 components of 3 families at 2 sites (A and B).

Site A B A B A B
Family 22x49 22x49 22x130 22x130 22x173 22x173
log(x,/x,) 4.07 4.34 3.94 4.58 3.99 4.21
log(x,/x,) 1.23 1.98 1.24 1.60 1.15 1.30
log(x,/x,) 4.04 4.50 4,15 4.68 4.09 4.38
log(x,/xs) 4.30 4.20 4.45 3.33 4.19 3.98
log(x,/xg) 2.88 4.65 3.596 4.300 3.73 4.30
log(x,/x,) 4.02 4.08 4.08 4.19 4.12 4.46
log(x,/x5) -2.95 -2.35 -2.70 -2.98 -2.84 -2.91
log(x,/x,) -0.04 0.16 0.22 0.10 0.10 0.18
log(x,/xs) 0.22 -0.14 0.52 -1.25 0.20 -0.23
log(x,/x,) -1.19 0.31 -0.34 -0.28 -0.27 0.09
log(x,/x,) -0.06 -0.26 0.14 -0.39 0.13 0.25
log(xy/x,) 291 2.51 2.92 3.08 294 3.09
log(xy/xs) 3.17 2.21 3.22 1.73 3.04 2,68
log(x,/xe) 1.75 2.66 2.36 2.70 2.57 3.00
log(xy/x,) 2.89 2.09 2.84 2.58 2.97 3.17
log(x,/xs) 0.26 -0.30 0.30 -1.35 0.10 -0.41
log(x,/xe) -1.15 0.15 -0.56 -0.38 -0.37 -0.09
log(x,/x;) -0.02 -0.42 -0.08 -0.48 0.03 0.08
log(xs/xe) -1.42 0.45 -0.86 0.972 -0.47 0.32
log(xs/x;) -0.28 -0.12 -0.38 0.86 -0.07 0.49
log(x/x;) 1.14 -0.57 0.48 -0.11 0.39 0.17

Table 7. — Variances of logratios between 7 components of 3 families at 2 sites (A and B).

Site A B A B A B
Family 22x49 22x49 22x130 22x130 22x173 22x173
log(x,/x,) 279 .045 .036 .801 .018 .009
log{x,/x,) .261 .702 216 144 .405 324
log(x,/x,) 117 .081 .198 720 .018 .018
log{x,/xs) 072 963 .180 342 .108 .045
10g(X,/Xe) 2.043 A7 765 054 855 027
log(x,/x,) 720 1.269 621 1.629 252 144
log(x,/x,) 216 657 .207 1.080 414 324
log(x,/x,) .090 .018 .099 .018 .009 .009
log(x/xs) 027 837 153 1.170 153 .036
1og(x,/xe) 2.052 072 648 1.206 927 .036
log(x/x,) 729 1.287 684 639 243 .189
log(xy/x,) 162 567 378 981 423 324
log(xy/xs) 144 918 144 531 297 279
10g(Xy/Xg) 1.107 576 873 081 837 243
log(xy/x,) 387 1.701 1.323 2.016 234 405
log(x,/xs) .045 702 A71 972 135 .027
log(x,/Xe) 1.503 .054 432 1.107 810 .045
log(x./x;) 423 1.386 909 531 270 .198
log(xs/xe) 1.773 720 .504 .468 918 .054
log(xs/x;) .558 3.735 1.008 1.305 .360 216
log(xg/x) 936 1.593 .999 2.142 .990 144
total variance 13.644 18.054 10.548 17.937 8.676 3.096
Table 8. — Percentage variation, estimated from the variance of following example. The correlation matrices for 4 different

logratios, of 3-component subcompositions compared to the 8-com-
ponent terpene composition of 3 clones at 2 sites.

Site A B A B A B ‘I
Clone 49 49 130 130 173 173
Sub position of #-pi gole, and a-phelland (X3, X3, Xg}
24.0 29.9 28.4 25.9 19.1 15.1
Sub position of a-pi . phene, and my Xy, Xg, %)
1.7 1.6 0.6 2.2 6.2 4.1
Sub position of a-pi ph and gole (x,, Xz, X;)
7.0 1186 16.1 13.1 6.4 5.1

4-component subcompositions are shown in table 9. In
each case, the proportions have been expressed on 2 dif-
ferent bases, the total terpene basis and the subcomposi-
tion basis. There are other possible bases on which pro-
portions could be calculated; none of them can claim to
be definitive. The variability in the correlations presented
in table 9 illustrates the severe limitations of basing
inferences on the results of analyses of raw proportions,
whatever their basis. In order to define a useful and
robust correlation structure ,the logratio covariance matrix,
outlined in 3.4 above, should be used.

Although small, the clonal data set (Table 2) has suffi-
cient in common with the data sets used in discriminant
studies to be of value in demonstrating an appropriate ap-
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Table 9. -~ Comparison of pooled within-clone correlations between proportions of
4-part subcompositions, estimated with respect to 2 bases, total terpene and sub-
composition.

Xy, X2, X4, Xg 8r@ proportions of total

Subcompotition of a-pinene, camphene, myrcene and limonene (x,, X5, X;, Xg)

Xy + Xg + Xg + %5 =1

X3, Xg, X7, Xg 8re proportions of total

terpene
Xy Xy Xq Xy Xz b
Xy .63 -73
X4 -.186 .45 -.98 .66

Subcompositbn;of'ﬁipineno, B-phellandrene, estragole, a-phellanarene (x,, Xg, X7, X)

Xy + Xg + X7 + X = 1

Xy, X3, Xg. X, 8re proportions of total
terpene

terpene
X3 Xg X, X Xg Xy
Xg .07 .03
Xy -.68 .25 -.98 -.04
Xe -.37 -.07 .09 -.23 .07 .05

Subcomposition of a-pinene, f-pinene, limonene, estragole (x,, x,, Xg, X;)

Xy + Xy + Xg + X =1

X X3 Xg

-.29

X2, X4, Xg. Xg 8@ proportions of total

Subcomposition of camphene, myrcene, 8-phellandrene and a-phellandrene (x,, Xx,, Xs. Xg)

Xy X3 Xg

Xy + X¢ + Xg + Xg = 1

| L=

terpene
X3 Xy Xg Xz Xq Xo
Xe 45 .55
Xg -.08 .25 .22 .65
Xg .31 .01 -.07 -.63 -.89 .82

proach to such data. The logratio data set was calculated
with respect to the proportion of a-pinene. Standard
statistics (AnpreEws et al., 1973) were calculated to test for
multivariate normality of the logratios, and no significant
deviations from normality were detected. There was,
however, significant heterogeneity of covariance between
sites for the same clone, and between clones within the
same site. This is not expected to have a large effect on
the following analyses.

The canonical variate analyses was carried out using
the seven logratios. This technique is an extension of
discriminant analysis, and is used for the investigation of
differences among a number of populations. The plot of
the first 2 canonical variates is shown as figure 1, from
which a clear separation of the 3 clones, but only a partial
separation between the same clones on different sites, is
evident.

In conclusion, the raw proportions are neither nor-
mally distributed nor of homogenous covariance, and there-
fore fail both assumptions inherent in standard multi-
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variate analyses. Further, results of analyses of the raw
proportions depend on which subcomposition is used. In
contrast, analyses based on logratio data are more likely
to satisfy the assumption of multivariate normality and are
independent of the basis on which proportions are defined.

4.3 An example of analysis of variance

Resin compositional data from genetic trials allows the
opportunity for estimation of genetic parameters, for those
metric traits whose distribution approximates the Nor-
mal. Neither assumption applies for the case of raw pro-
portional data; the latter has often been addressed by
use of the arcsine transformation of the proportions of
individual components (SchiLLER and GruNwaLDp, 1987;
BarapaT and Yazpani, 1988; SmitH et al., 1988). However,
the arcsine transformation is the specific variance-stabili-
zing transformation applicable to proportional data that
result from counts that follow a binomial distribution: it
is entirely inappropriate to apply it to resin compositional
data.



An appropriate analysis, acknowledging the non-nor-
mality of and the constraint acting on resin compositional
data, is to calculate logratios, which overcomes these two
limitations. The genetic parameters of the logratios can
then be estimated and interpreted, perhaps in the light
of our increasing knowledge of biosynthetic pathways.

The data set available from the P. elliottii progeny
trial (Table 3) comprised only 3 related families, and is
therefore an inadequate basis for the estimation of genetic
parameters. Nevertheless, the 1st step in parameter estima-
tion, a univariate analysis of variance of each logratio,
could be conducted. In this case, 6 logratios for the com-
ponents were calculated with the proportion of f-pinene
as the divisor, and the analysis revealed significant dif-
ferences between sites, families, and replicates for some
logratios. A multivariate analysis of variance also revealed
significant differences between sites, families and repli-
cates. Given the very limited sample size, one would not
want to generalise from this result, but it nevertheless

Clone
49 1
130 2
173 3
4

S

Site

49
130
173

clone/site mean

A

second canonical variate

demonstrates the applicability of “standard” analytical
methods to logratio data.

5. Conclusions

Most researchers working with resin compositional data
have acknowledged, implicity at least, the complications
such proportional data pose for analyses and interpretation,
but few appear to appreciate quite how fundamental these
difficulties are. The major limitation of proportional data,
from the point of view of taxonomists, geneticists and
biochemists, is the lack of an interpretable covariance
structure for such data. Those researchers who have at-
tempted to address the difficulties inherent in propor-
tional data have generally done so through inappropriate
transformation of the data, or by marginal modification
of standard statistical techniques. Neither addresses the
fundamental problem. There are few statistically wvalid
approaches to such data sets, some of which we described
in an earlier paper (Birks and Kanowski, 1988); that which
appears to offer most promise was developed by ArrcHisoNn
(1984, 1986), and applied in this study to resin data sets.
It is derived from properties of the lognormal distribu-
tion, is based on expression of the compositional data as
sets of logratios of constituents, and allows the application
of standard multivariate procedures to logratio data sets.
We look forward to the valid reanalysis and reinterpre-
tation of the many valuable resin data sets already in
existence, and to the taxonomic, genetic and biochemical
information these studies will provide.

0 2 4 6 8

first canonical variate

Figure 1. — Canonical variate analysis of 7 logratios of 3 clones at 2 sites.
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