Inheritance of Resistance to Races of Melampsora medusae in Populus deltoides

By Ch. S. Prakash and W. A. Heather

Dept. of Forestry, The Australian National University, GPO Box 4, Canberra, ACT 2601, Australia

(Received 23rd April 1988)

Summary

The F₁ progeny of a Populus deltoides cross were analysed independently for their reaction to six races of Melampsora medusae, which elicited susceptible × resistant, resistant × resistant or susceptible × susceptible reaction in parents depending on the races employed. Resistance was inherited as dominant (3 races), recessive (2 races) or quantitative, additive (1 race) in the clones, and was controlled by a single gene or two genes acting in a complementary or duplicate manner, depending on the race. Modifying factors influenced the degree of susceptibility expressed in certain plants and resulted in a 'slow rusting' effect. Relevance of the results to poplar breeding for leaf rust resistance is discussed.

Key words: Genetics, Leaf rust, Melampsora medusae, Populus deltoides, Disease resistance, Slow Rusting.

Zusammenfassung


1. Introduction

Leaf rust, caused by Melampsora medusae Thüm., is an important disease of poplar, and several races of this pathogen have been recognised in Australia (Singh and Heather 1982). An understanding of the inheritance of resistance to different races of the pathogen is essential in devising strategies for management of the disease by breeding and selection. Mårten Larssen (1970), following a field analysis of a population of poplar progeny, concluded that resistance in Pinus flexilis and P. strobusformis provenienzen in Michigan and Nebraska, Melampsora medusae in a Populus deltoides Maeh (2 n = 38) cross, assessed on a qualitative scale using detached leaf disks.

2. Materials and Methods

2.1 Origin of Parents

The parents, P. deltoides cvs. 60/122 (female) and T-173 (male), are selections from separate Texas provenances (Williams, R. L., pers. commn.). Cv. 60/122 is relatively more susceptible than cv. T-173 to all the races of M. medusae.

2.2 Hybridisation

Crosses were performed on bottlegrafted branches of cv. 60/122 in a glass house as described by Knox et al. (1972). The branches, bearing unopened female flower buds, were collected from the poplar plantation maintained by the Botany Department, Australian National University, and washed with a jet of tap water. The grafts were made during winter 1982 (mid August) about 3–4 weeks prior to natural flowering in the field. The understocks (rooted for 4 months), consisting of cuttings 40–60 cm long, and 1.5–2.0 cm in diameter, were transplanted into 20 cm pots. Pollen of cv. T-173, collected from plantations at Kempsey, NSW, was dried over silica gel (24 h) and stored in a freezer (−14°C) for 1–2 weeks prior to use. Crosses
were conducted, in an isolated, pollen proof glasshouse during the early morning, by gently dusting the pollen on the opening female buds. Several other crosses were performed using separate cultivars but were not included in the study since insufficient progeny were obtained.

Seeds were collected after 60—70 days and germinated in Perlite under a mist spray. A nutrient solution was applied twice-weekly, and the seedlings transplanted when the first true leaf pair unfolded (c. about three weeks) into pots containing Perlite and Vermiculite (1:1). About 110 F1 plants were raised from this cross and individually labelled.

The parents were propagated by clonal cuttings under mist and grown along with F1 plants under controlled conditions in a rust-free glasshouse (20 ± 3°C, 16 h photo-period). Liquid fertilizer (Hortico®) was applied once a week and a bacterial (Baccillus thuringiensis Berliner var. alesii) insecticide (Lane Dipel® HG) was sprayed occasionally to control leaf eating caterpillars. Plants were cut back every 3 months to ensure the development of fresh leaves of uniform age suitable for optimal disease expression (Sharma et al. 1988). The tests were conducted on leaves from plants aged 12—24 months.

2.3 Pathogen Isolation

Six races of M. medusae, recognised as distinct races by their qualitative reactions on a set of differential cultivars (Singh and Heath 1982), were employed to study the inheritance of resistance in this cross. The ure diniospore of M. medusae is dikaryotic (n + n) and is asexually (clonally) propagated. Five of the six races (1A, 2A, 3A, 4A, 5A) originated from single separate ure diniospores (Singh and Heath 1982) while race 4B was isolated from race 4A for its avirulence on cv. T-173 using a leaf replica technique (Prakash and Heath 1985a). Spores of all the races were multiplied separately on detached leaves of P. x euramericana (Doe) Gunner cv. I-488, a universal susceptible, supported on gibberellic acid solution (10 mg/L) in plastic Petri dishes (Singh and Heath 1982). Freshly harvested spores were dried in a dessicator in vacuo (24 h silica gel, 24 h P2O5) and used immediately for inoculation.

2.4 Inoculation

The disease reaction of each plant to each race was assessed by using leaf disks (five replicates) from the individual plants. Because of the large population involved, the tests were conducted in three batches (Races 1A and 2A, 3A and 4A, 4B and 5A were studied pair-wise).

Leaf disks (1.70 cm²) were punched from freshly harvested, surface sterilised leaves of uniform age (c. 3 months). Due to the segregation in the F1 population, minor differences in leaf maturity were noticed; they were insufficient to influence the relative variation of disease expression. Again, due to replication of leaf disks in the inoculation it was possible to assess only c. 60 randomly selected, F1 plants for reaction to a particular race pair; some 40 plants had been subjected to all the six races at the conclusions of the study.

All the leaf disks of F1 plants and the parents were inoculated separately with the ure diniospores of individual races using a spore settling tower (Sharma et al. 1980). Replicate leaf disks (5 for F1 plants, 10 for each parent) from individual plants, some cover glasses and several disks of cv. I-488 were randomly placed in the bottom of a spore settling tower and inoculated in three successive batches with 5 mg of fresh spores of a race. Subsequently, separate replicate disks and cover glasses were inoculated with spores of the second race of the pair. Comparability of deposition between inoculations, within and between races, and germination (> 95% for all races) were checked by examining the coverglasses, while the uniformity of infection was checked on the disks of the universal suscep t, cv. I-488. Inoculated leaf disks were placed on plastic foam soaked with gibberellic acid solution (10 mg/L) sealed in glass Petri dishes and incubated in control growth cabinets (16 ± 1°C, 100 μE m⁻² s⁻¹, 16 h photoperiod) (Singh and Heath 1982).

2.5 Disease Assessment

The observations on the level of disease on each plant were assessed as Infection Type (IT) on day 18 and confirmed on day 23 of incubation. The IT was on a 0 to 4 scale of increasing disease severity (Figure 1), where 0 — immune, no macroscopic symptoms of disease, 1 — chlorotic/necrotic symptoms with possibly one or two minute uredinia, 2 to 4 — increasing size and number of uredinia (Prakash and Heath 1985b). For the computation of the genetic ratios, IT 0 and 1 in the plants were classed as resistant and 2—4 as susceptible reactions. This classification distinguished among the plants, those on which reproduction of the pathogen did not occur or was insignificant (IT 0—1) and those on which the rust reproduced (IT 2—4). The ratios (resistant : susceptible) were tested for goodness of fit to several hypothetical genetic ratios using χ² test and those ratios which gave the best fit i.e. the highest probability range, were accepted (Strickberger 1986).

3. Results

For all pathogen races, one parent (cv. 60/122, F1, female) was consistently more susceptible than the other (cv. T-173, F1, male). The reaction (IT) of the parents was dependent on the race employed (Table 1) and thus for each race the cross could be classified as either Resistant x Resistant, Susceptible x Resistant or Susceptible x Susceptible (Table 1). With all the races, the F1 plants exhibited clear segregation indicating the heterozygosity of the parents. Five of the six races elicited different ratios in the progeny (Table 1) thus confirming their status as distinct races (sensu Stakman and Christensen 1953), which had been recognised by their reaction on differential cultivars (Singh and Heath 1982).

Races 1A, 2A and 3A elicited a Susceptible (60/122) x Resistant (T-173) reaction in the parents. Reaction to race 1A in the progeny approximated a 1:1 ratio, suggesting the role of one gene (dominant or recessive, L or l) for resistance (P = 0.5—0.8). Race 2A elicited a 3:1 (S:R) ratio (P = 0.8—0.9) for which the simplest explanation is that resistance in cv. T-173 is conditioned by the concurrent occurrence of two, homozygous, recessive genes (qqmm) for resistance to this race while cv. 60/122 was dominant heterozygous for both the genes (QqMm). However, the reaction to race 3A by the F1 plants was less discrete, the classes approximating a normal distribution and thus the resistance to this race may be quantitatively inherited and controlled by three or four genes acting additively (sensu Allard 1960).

Both the parents are susceptible to race 4A but the F1 plants gave a ratio of 15:1 (S:R) to this race. This would be expected, if we assume the action of two duplicate, recessive genes controlling resistance (mmnt). Races 4B and 5A were avirulent to all the parents and the progeny reaction approaches a 3:1 (R:S) ratio (P = 0.25—0.5 and 0.7—0.8 respectively) suggesting the action of a single, dominant gene for resistance to each of these races in
Figure 1. — The Infection Type (IT) on a 0—4 scale of disease severity by M. mucedo on the leaf disks of F₁ plants of cross P. deltoides cv 60/122 X T-173.

Table 1: Reaction of parents P. deltoides cvs. T-173 and 60/122 and their F₁ hybrids to six races of M. mucedo and the χ² probability levels of certain genetic ratios for segregation in the F₂ progeny.

<table>
<thead>
<tr>
<th>RACE</th>
<th>INFECTION TYPE AND RESISTANCE CLASSIFICATION</th>
<th>PARENTAL CVS.</th>
<th>NUMBERS OF F₂ PROGENY</th>
<th>RATIO OF RESISTANT TO SUSCEPTIBLE IN PROGENY</th>
<th>PROBABILITY RANGE (χ²)</th>
<th>PROPOSED GENETIC MAKE-UP OF PARENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>60/122</td>
<td>T-173</td>
<td></td>
<td></td>
<td>60/122 X T-173</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td></td>
<td>3</td>
<td>1</td>
<td>0:27:1:15:16</td>
<td>27:32:1:1</td>
<td>0.0-0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(S)</td>
<td>(R)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td></td>
<td>3</td>
<td>1</td>
<td>0:14:1:16</td>
<td>14:46:1:1</td>
<td>0.0-0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(S)</td>
<td>(R)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td></td>
<td>3</td>
<td>1</td>
<td>5:17:24:11:7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(S)</td>
<td>(R)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A</td>
<td></td>
<td>4</td>
<td>3</td>
<td>1:3:13:22:25</td>
<td>4:60:1:1:1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(S)</td>
<td>(S)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4B</td>
<td></td>
<td>1</td>
<td>0</td>
<td>27:20:7:4</td>
<td>55:13:3:1</td>
<td>0.26-0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R)</td>
<td>(R)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5A</td>
<td></td>
<td>1</td>
<td>0</td>
<td>10:32:13:1:4</td>
<td>50:10:3:1:1</td>
<td>0.7-0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R)</td>
<td>(R)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* R and S refer to Resistant and Susceptible reactions, respectively.

Each of the cultivars (U and V respectively). Most of the F₁ plants resistant to race 5A were also resistant to race 4B suggesting possible linkage of these two resistant genes. However some plants were resistant to one but susceptible to other races, suggesting two separate genes for resistance are involved.

Many of the F₁ plants (and the male parent, cv. T-173 to race 4A) exhibited degrees of 'slow rusting', characterized by a long latent period and reduced sporulation, suggesting the presence of modifying factors influencing the disease expression in these cultivars. While such characteristics did not affect the classification of individual plants as resistant (IT 0 or 1) or susceptible (IT 2—4) at the time of disease assessment, they influenced the grading of disease severity in plants within the IT 2—4 range.
4. Discussion

The dioecious nature and long generation interval (7—8 years) of the host and the absence from Australia of the sexual stage of the pathogen make genetic studies on host-pathogen interactions in the *Populus - M. medusae* system difficult. Thus hybridization amongst pathogen races and selfing of the host clones, is not possible, while backcrossing and further generation testing is difficult and time consuming. Hence, the genetic interpretation of results of the inheritance of leaf rust resistance in poplars is largely hypothetical. However, since genetic studies have not been reported in this system, any information would be helpful in planning breeding programs. The strict control of the environmental variables (both pre- and post-inoculation conditions of plant culture, and uniformity of leaf maturity and inoculum) resulted in considerable uniformity in disease expression in the replicate leaf disks of an individual plant. This ensured that the variation between individuals in infection type was genetically based.

The disease reaction (IT) of the parents and the ratios of the progeny were clearly dependent on the race of *M. medusae* employed, emphasising the importance of employing distinct races in disease resistance studies (Person and Sidhu 1971). In these clones of *P. deltoides*, resistance appears to be dominant with races 1A, 4B and 5A, but recessive with races 2A and 4A, and codominant, additive or quantitative to race 3A (Table 1). It can be hypothesised that resistance/susceptibility to *M. medusae* was monogenic (races 1A, 4B and 5A), controlled by two duplicate genes (race 4A), or two complementary genes (race 2A) or three to four additive genes (race 3A) depending on the race employed. The likely presence of duplicate factors for resistance to race 4A may result from the secondary polyploid nature of poplars (Muhr L. 1970). Superficially, different segregation ratios may be obtained from the data with certain races reported here if the dividing line between R and S categories is altered (for example if R includes IT’s 0, 1 and 2 rather than just 0 and 1). However, this possibility was rejected as it would require a more complicated genetic model to explain the IT values of the progeny and parents (except with race 4A). Further, the present classification of R and S reactions are relatively more precise and repeatable under the experimental conditions employed.

Some F₁ plants exhibited relatively long latent periods. Possibly certain modifying factors influenced disease expression and resulted in 'slow rusting' of these susceptible plants. Such plants would be useful as sources of partial resistance (Parlevliet 1979).

Almost all the F₁ plants showed a high level of racial specificity probably due to the different resistance genes they contained. Such genotypes would still be useful in mixed clonal plantings similar to the multiline approach suggested by Heather and Chandrashekar (1982) and their resistance would likely be persistent when accompanied by 'slow-rusting' type resistance (Prakash and Heather 1986).

The results for races 2A, 3A and 4A contrast with those frequently reported in inheritance studies in agricultural crop plants where resistance is predominantly monogenic dominant (Person and Sidhu 1971). However, as Wolfe and Schwarzbach (1978) and Day et al. (1983) have suggested, the late flush may be the result of a breeding strategy which has concentrated on few resistance genes each with a large effect. In a forest plant like poplar, where little or no breeding for resistance to leaf rust has been practised, the observation of a multiple gene control is not unexpected.

The poplar leaf rust system is liable to environmental factors (Heather and Chandrashekar 1982, Singh and Heather 1982). To ensure durability of resistance, despite the polymorphism of the races of the pathogen and the environmental liability of the system, the stability analysis approach similar to that suggested by Jenks et al. (1982) may be useful in selecting cultivars whose resistance is potentially durable. Heterogeneity of deployment of such cultivars over time and space would further ensure such durability.

5. Acknowledgements

We thank Mr. Ruddie Willing for his encouragement in this study and for supplying pollen of cv. T-173, and Dr. M. U. S. and Dr. J. J. Burgon for advice on manuscript. We acknowledge Dr. Robdel and Dr. David Pederson for their advice on genetic ratios.

We appreciate the help of Mr. Andrew Carafa during hybridisation and to Ms. Lesia Prakash for technical assistance.

References


