Short Note: In Vitro Induction of Organogenesis in Juvenile and Mature Beech

By M. R. AHRUA

Federal Research Centre for Forestry and Forest Product,
Institute of Forest Genetics and Forest Tree Breeding,
Sieker Landstraße 2, D-2070 Großhansdorf,
Federal Republic of Germany

(Received 8th October 1984)

Abstract

Bud explants from three mature trees (more than 70 years old) and embryonal explants derived from the seeds of the same trees, belonging to three cultivars of European beech, Fagus sylvatica L., namely, 'Zlatia', 'Pendula', and var. purpurea, were cultured on modified Woody Plant Medium. Only bud explants from var. purpurea showed limited differentiation of shoots; bud explants from 'Zlatia' and 'Pendula' remained largely unresponsive under the experimental conditions. The embryonal explants from all three cultivars exhibited shoot formation, although the number of shoots was mostly limited to a few. Occasional plantlet regeneration from embryonal explants were observed.

Key words: European beech (Fagus sylvatica), embryonal explants, bud explants from mature trees, tissue culture, shoot differentiation, plantlets.

Zusammenfassung


Introduction

Tissue explants from mature forest trees are generally difficult to grow and differentiate in vitro (BONGA 1982), unless they are obtained from juvenile material. Vegetative propagation of most mature trees is also difficult, unless the cuttings are taken from young trees. Obviously, some change occurs in the physiology/biochemistry of the mature tree that seems to interfere in the rejuvenation process. European beech (Fagus sylvatica L.) is extremely difficult to propagate vegetatively by cuttings from mature trees. The present investigation was aimed at in vitro induction of organogenesis in explants derived from juvenile material and mature trees of beech, for eventual application in clonal propagation of superior genotypes.

Materials and Methods

The present study was based on three mature trees (more than 70 years of age) belonging to three cultivars of European beech, Fagus sylvatica L., 'Zlatia', 'Pendula', and var. purpurea. Bud explants from the mature trees, taken in late autumn and early spring, and embryonal explants derived from seeds collected from the same trees were cultured on a modified Woody Plant Medium (WPM; LLOYD and McCOWN 1981). The WPM was variously supplemented with growth substances: 0.3–1.0 mg/l 6-benzylaminopurine (BA), 0.2–0.5 mg/l kinetin (KIN), 0.01–0.04 mg/l naphtheneacetic acid (NAA), 0.01–0.02 mg/l indole-3-acetic acid (IAA), 0.01–0.02 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D), and 10–20 mg/l adenine sulphate. In addition, 100 mg/l casein hydrolysate and 50–100 mg/l l-lysine were also tested in combination with phytohormones. Altogether 9 different modifications of WPM involving different combinations of growth substances were employed for the present study. Cultures were maintained at 25°C, 70% relative humidity, and 16 hours photoperiod (2000–3000 lux).

Results and Discussion

Preliminary results from the present study have indicated that bud explants from mature beech trees are, in general, difficult to grow and differentiate in vitro. Of the three beech cultivars investigated, bud explants from 'Zlatia' and 'Pendula' showed practically no growth and differentiation on the media tested. However, about 50% of the 206 bud explants from var. purpurea showed slight growth, and only a small proportion (about 10%) of the explants exhibited a limited differentiation of buds (mostly one or two) on media containing low levels of phytohor-
The differentiation of shoots on the bud explants in var. purpurea occurred in 10 to 12 weeks. The embryonal (juvenile) explants from all three cultivars of beech showed growth and differentiation on several different combinations of phytohormones tested. Initially, there was some callusing on the embryonal explants. After 4–6 weeks shoots differentiated on the embryonal explants. The number of shoots was mostly limited to one or two per embryonal explant following the first transfer to the fresh medium. However, in some cases as many as 6 shoots and in another 9 shoots per explant were observed. In a few cases both shoot and root differentiation occurred on the embryonal explants (Fig. 2). A single plantlet from an embryonal explant is not optimal for clonal propagation. Consistent multiple shoot formation on tissue explants is a prerequisite for cost-effective clonal propagation. We are investigating media and cultural conditions that would allow an increase in the number of shoots per tissue explant.

In these experiments with European beech the embryonal explants from all three cultivars showed growth and differentiation of tissues. However, the number of shoots per explant was rather low, except in sporadic cases. Bud explants from 70 plus years old beech trees from two cultivars, namely, ‘Zlatia’ and ‘Pendula’ did not grow or differentiate shoots. However, a small proportion of bud explants from var. purpurea differentiated a limited number of shoots under the experimental conditions. These experiments would suggest that juvenile state seems to be morphogenetically more labile as compared to the mature state, which in turn appears to be under differential genetic control.

Tissue culture studies with aspen, Populus tremula, P. tremuloides, and their hybrids have indicated that rapid clonal propagation can be accomplished by bud meristem explant culture method from mature trees (15 to 40 years old) as well as from juvenile material (Ahija 1983, 1984). Mature micropropagation has also been accomplished in 100 years old Sequoia sempervirens (Boulay 1979), 100 years old Tectona grandis (Gupta et al. 1980), 60 years old Prunus avium (Cornu et al. 1981), and 10 to 20 years old Eucalyptus spp (Maschennas et al. 1982). In this regard, European beech seems to be a recalcitrant tree species. Nevertheless, our tissue culture studies are continuing to probe into problems of multiple shoot production and optimal conditions for root formation in tissues derived from juvenile material and mature beech trees.

References


Buchbesprechungen
