ted in quantitative inheritance), but several transgressions are evident. Most noteworthy are higher percentages of the citronellol group and car-3-ene, and lower ones of α-terpineol and the sesquiterpenes. These terpenes did not appear to have any significance in describing geographic variation of natural populations (von Rudloff, 1972, 1973, 1975) (von Rudloff and Rehfelt, 1980). Similar conclusions could be drawn from the leaf oil compositions of the narrow crosses (parent trees 28, 36, 102, and 109). When one of the parents has a small amount of interior intermediacy (e.g. trees 83, 102, 109, and 517 with 5–6% camphene group), this feature is lost in the crosses. We have reported earlier on the abrupt reduction of the camphene group percentages (dominant in the Rocky Mountain variety) in the zones of overlap of the two varieties when sampling the more westerly stands (von Rudloff and Rehfelt, 1980).

Conclusion

In coastal Douglas-fir there is a high degree of variability in the leaf oil terpene patterns, which indicates a high degree of heterozygosity. Only in the dwarf form of the S2 generation is a trend towards homozygosity evident. Female dominance does not appear to be a major factor in leaf oil terpene inheritance. Hence, in chemosystematic studies utilizing leaf oil terpene compositions, variable patterns from type A through B to C (von Rudloff, 1973) can be expected in coastal populations. The small degree of intermediacy with the interior variety found in some coastal locations may be lost in the next generation.

Acknowledgements

Permission to sample the inbred trees by Drs. A. L. Oer-Ewing and help in sampling as well as discussion of results with Mr. J. C. Harman are gratefully acknowledged.

References

Number of Offspring and Plot Sizes Required for Progeny Testing

By P. P. Cotterill3) and J. W. James3)

(Received 27th December 1963)

Summary

The accuracy of progeny testing is examined in relation to numbers of offspring tested and plot size used in the field design. Two mathematical solutions are presented, together with results of subsampling studies employing data for Pinus radiata in New Zealand and Australia. The mathematical solutions determine either the size of the differences between families in a progeny test which should be detected as statistically significant, or the probability that the family having the best true mean will also have the best observed mean in a progeny test. The general recommendation from both the mathematical and subsampling studies is that 10 to 20 individuals per family, growing in single-tree plots or two-tree non-contiguous plots, are sufficient to reliably evaluate each family.

Key words: Progeny testing, family means, plot size, field design.

Zusammenfassung

Résumé

La précision du test de la descendance est examinée par rapport aux nombres de descendants testés et au nombre d’arbres sur une parcelle usée pour les essais sur le terrain. L’auteur propose deux solutions algébriques et énonce à la fois les résultats des études du sous-échantillonage, en employant les données pour les pins (Pinus radiata) en Nouvelle-Zélande et en Australie. Il préconise généralement que 10 à 20 descendants par famille, qui croissent sur les parcelles supportant une ou deux arbres, suffisent pour évaluer d’une manière sûre les familles de chaque parcelle.

Introduction

A major problem in progeny testing is “How many individuals are required to adequately evaluate each family?” One solution is given by Robertson (1957) with particular reference to animal breeding. This author provides estimates of genetic gain from progeny testing where a limit exists on the total number of offspring that can be tested, and the breeder has the opportunity to compromise between number of families tested (which determines the intensity of subsequent selection among families) and number

Silvae Genetica 33, 6 (1984)
of individuals per family (which determines the accuracy of the evaluation of each family). Genetic gain was found to be maximised by testing as few as five individuals per family and thereby devoting more resources to testing more families.

Mathematical Solutions

The following algebra overcomes difficulties in combining several traits by assuming that the progeny test is for one trait only. This single trait may, however, be an index which combines information from several traits. The trait used as the selection criterion is assumed to be normally distributed.

Solution 1: Differences which should be Detected Between-Families

Statistical tests give the size of samples required to compare two treatments as—

$$n = \left(\frac{Z_{0.025} + Z_{0.05}}{\sigma_{t} \sqrt{2}} \right)^2$$

(e.g. SNEDECOR and COCHRAN 1967, Equation 4.13.1). In the case of progeny testing, n represents the number of individuals in each family, σ^2 the variance within families, and $(Z_{0.025} + Z_{0.05})^2$ is a constant. Values of $(Z_{0.025} + Z_{0.05})^2$ are given by SNEDECOR and COCHRAN (1967) and reflect the probability that the progeny test will show a statistically significant difference between the observed means of two families when the difference between their true means is δ. The higher the probability and level of significance the breeder may require for the progeny test to show a significant difference between the family means, the higher the value of $(Z_{0.025} + Z_{0.05})^2$.

The within-family variance in Equation 1 can be written

$$\sigma_{t}^2 = (1 - \epsilon) \sigma^2$$

where ϵ is the intra-class correlation and σ^2 the phenotypic variance. Assuming an additive model; $t = t_2/b^2$ for half sib families and t_1/b^2 for full-sibs (b^2 is the individual heritability of the trait being evaluated).

Substituting Equation 2 into 1 it is possible to solve for, δ/σ, the minimum difference in phenotypic standard deviations which should be able to be detected between the means of two families with a probability and level of significance corresponding to $(Z_{0.025} + Z_{0.05})^2$—

$$\Delta/\sigma = \left(\frac{Z_{0.025} + Z_{0.05}}{\sqrt{2}} \right) \frac{1 - \epsilon}{\sigma^2}$$

Solutions to Equation 3 are plotted against n in Figure 1 for circumstances where the offspring are either half-sib or full-sib, b^2 is 0.65 or 0.8, and the breeder requires 80% or 95% probabilities of detecting a statistically significant difference between families at the 5% level.

The minimum difference δ/σ which should be detected between families decreases logarithmically as the number of individuals per family is increased (Figure 1). The curves have flattened appreciably by about $n = 10$ individuals and after about $n = 20$ there is very little reduction in δ/σ with further increases in n. We conclude from Figure 1 that around 10 individuals per family represents a lower limit for reasonably accurate evaluation of families, while 20 individuals per family represents an upper limit beyond which further testing of offspring will probably lead to little increase in accuracy. The 10 to 20 individuals per family is greater than the five individuals recommended by ROBERTSON (1957) for maximising genetic gain from selection among families, but ROBERTSON’s calculations show that testing 10 to 20 individuals will usually lead to a response from selection which is within 10% of the maximum. When the cost of progeny testing is taken into account through benefit-cost analyses (such as those used by HULL 1974 for breed-comparison experiments) the re-
Figure 1. — Minimum differences δσ/σ (in units of phenotypic standard deviation) between the means of families in a progeny test which should have either a 88% or 89% probability of being found statistically significant at the 5% level. Minimum differences between means of half-sib families are plotted against number of individuals per family n for the circumstances of 88% probability and either h² = 0.65 (— — — — — —) or h² = 0.8 (— — — — —); or for the circumstances of 89% probability and either h² = 0.65 (— — — — — —) or h² = 0.8 (— — — —). Minimum differences between means of full-sib families are plotted against n for the circumstances of 89% probability and either h² = 0.65 (— — — — — —) or h² = 0.8 (— — — — —).

commendation may again favour less than 10 individuals per family, but this would depend on the cost structure of particular breeding operations.

At any level of n, the minimum difference δσ/σ is reduced when the probability required for detecting a significant difference is decreased, or the heritability of the trait being evaluated is increased (Figure 1). When heritability is high (h² = 0.8) the use of full-sib instead of half-sib offspring also reduced δσ/σ (Figure 1) because the full-sibs had less within-family variation (σ²f; Equation 2). However, under conditions of low heritability (h² = 0.65) these is very little difference in variation within full-sibs compared with half-sibs, and consequently the use of full-sib offspring did not substantially reduce δσ/σ.

The usefulness of the parameter δσ/σ and Figure 1 for predicting the accuracy of family evaluations is best illustrated by example. Consider a progeny test for diameter at age 4½ years in P. radiata in South Australia. It is known that the trait has a heritability of around 0.15 and a phenotypic standard deviation of around σ = 2.2 cm (Cotterill and Zhou 1980). We may use Figure 1 to calculate that n = 20 half-sib individuals per family should allow an 80% probability of detecting a minimum difference between-families of at least δ = 1.98 cm (i.e. δσ/σ = 0.9 for h² = 0.65, Figure 1). For n = 10 half-sibs the difference should be δ = 2.64 cm (i.e. δσ/σ = 1.2), and for five half-sibs δ = 3.96 cm (δσ/σ = 1.8).

A major shortcoming of this mathematical Solution 1 to predict the accuracy of progeny testing is that "accuracy" is measured in terms of the probability that the classical null hypothesis of no difference between families is rejected. However, the objective of progeny testing is to evaluate families to determine which are best, not determine the statistical significance of the differences which exist among families (Hsu 1974). The next mathematical solution we present does not attempt to determine probabilities of rejecting the null hypothesis of equal means, but gives the expected probability that correct decisions will be made in identifying best families.

Solution 2: Probability of Detecting the Best Family

It is possible to estimate the probability that the best family (i.e. the family having the best true mean) will also have the best observed mean in a progeny test with n individuals per family. This represents the probability that δ, the difference between the observed mean (X) of the best family and the observed mean (X) of another family, is greater than zero (i.e. P (d) > 0; where d = X₁ - X₂). Assuming the population of δ's is normally distributed with mean μ and variance 2σ²/n, the probability P (d) > 0 is given by the area under the standard normal curve to the right of a point Z at which d = 0 —

\[Z = \frac{(d-\mu)/\sqrt{2\sigma^2/n}} \]

(4)

\[Z = -\sqrt{2\sigma^2/n}; \text{ where } d = 0 \]

(5)

Substituting Equation 2 —

\[Z = (-\mu/\sigma) \sqrt{n}/(d-Z) \]

(6)
The approach is similar to the method adopted by Jones (1986) for determining optimum sample size for prize exhibitions with animals. Probabilities corresponding to different values of Z in Equation 6 can be derived from cumulative standard tables. For instance, Table A3 in Snedecor and Cochran (1967) gives the area under the standard normal curve from the origin to a point Z. The total area to the right of the negative values for Z derived from Equation 6 would be the area given in Table A3 plus 0.5.

Table 1 gives probabilities determined from Equation 6 for a range of values of n and \(\psi/\sigma \), under circumstances where the offspring are half-sib and \(h^2 = 0.4 \). The value \(\psi/\sigma \) is of course the difference in standard deviations between the true means of the two families being compared. Preliminary calculations revealed that the probabilities in Table 1 are essentially the same for full-sib offspring and high or low heritabilities. It is apparent from Table 1 that 10 to 20 individuals per family give the breeder a very good chance of making correct decisions from the results of progeny testing. For instance, 20 individuals per family can be expected to give a 95% chance of detecting the best family when that family has a true mean one-half of a phenotypic standard deviation greater than the true mean of another family (i.e. \(\psi/\sigma = 0.5 \); Table 1). The corresponding probability for \(n = 10 \) individuals is 88%, while for \(n = 5 \) the probability falls to 80%.

A very large number of individuals per family is required to give reasonable probabilities of identifying the best family when its true mean is only one-quarter of a standard deviation greater than other families (i.e. \(n = 50 \) individuals are required to give a 91% probability; Table 1). In practice, it is unreasonable for breeders to expect this level of accuracy from progeny testing. In fact James (1975) demonstrated that it is not even necessary to measure traits to within one-quarter of a standard deviation. This author calculates that for progeny tests or other large field experiments an acceptable unit of measurement is around one-third of a standard deviation. Thus, if diameter at 4\(\frac{1}{2} \) years has a phenotypic standard deviation of 2.2 cm, measurement of the trait in units of 0.7 cm (or rounded to units of say 0.5 cm) would be sufficiently accurate.

Subsampling Radiata Pine Progeny Data

Family Rankings for Different Numbers of Offspring

Height and diameter data for first-generation progeny tests of *P. radiata* in the Kaingaroa Forest (North Island of New Zealand) and the Myora Forest (south-eastern South Australia) have been employed to measure the extent to which rankings of families (i.e. accuracy of family evaluations) are altered by reducing the number \(n \) of individuals used to calculate the family mean. The object is to determine, for actual data, how few offspring may be tested before family evaluations become unacceptably erroneous.

The progeny test at Kaingaroa was measured six years after planting and the data we used is from 25 half-sib families. These half-sib families are polycrossed, produced by controlled-pollination using a mix of 10 pollens. The field design of the progeny test is 10 replications of non-contiguous plots of approximately five single-trees (planted at a spacing of 4 x 4 m), with a total of \(n = 33 \) to 50 individuals measured for each family. The mean height of trees in the test was 8.1 m (\(\sigma = 1.0 \) m) and the mean diameter 15.8 cm (\(\sigma = 2.3 \) cm). The Myora progeny test was measured 4\(\frac{1}{2} \) years after planting and we have used data from 44 families; 33 of which are full-sib and the remainder half-sib (open-pollinated in a clonal orchard). The field design is randomised complete blocks with 30 replications of single-tree plots (planted at a spacing of 2.1 x 2.1 m), with \(n = 29 \) to 30 individuals measured per family. The mean height of trees was 9.9 m (\(\sigma = 1.0 \) m) and the mean diameter 13.9 cm (\(\sigma = 2.2 \) cm).

The Kaingaroa data were reduced from 10 replications of around five-tree non-contiguous plots to 10 replications of exactly four, three, two and single-tree plots, and then to five and finally two replications of single-tree plots; giving \(n = 33 \) to 50 (complete data), 40, 30, 20, 10, 5 and 2 individuals per family. The Myora data were reduced by deleting replications of the single-tree plots to give \(n = 29 \) to 30 (complete data), 20, 10, 5 and 2 individuals. The subsampling of both progeny tests was at random. Two independent subsamples were actually taken for each level of \(n \) and both gave essentially the same results (i.e. essentially the same rankings of families). Rank correlations (described below for each pair of replicate subsamples were averaged and the means presented in Figure 2). Progeny tests that employ single-tree plots were used deliberately in this study to avoid confounding of subsample and plot sizes.

Spearman’s rank correlations (Snedecor and Cochran 1967) have been used to quantify the degree of association be-

Table 1. Probability that a family having a true mean \(4\frac{1}{2} \%-standard units greater than another family will have the best observed mean in a progeny test with \(n \) half-sib progeny per-family. The heritability of the trait being evaluated is 0.4.

<table>
<thead>
<tr>
<th>Standard difference between true means ((\psi/\sigma))</th>
<th>Number of individuals per family ((n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>0.25</td>
<td>60</td>
</tr>
<tr>
<td>0.50</td>
<td>70</td>
</tr>
<tr>
<td>0.75</td>
<td>79</td>
</tr>
<tr>
<td>1.00</td>
<td>85</td>
</tr>
</tbody>
</table>

Figure 2. Correlations between rankings of families calculated for complete data compared with rankings calculated for subsamples of 40, 30, 20, 10, 5 or 2 individuals per family. The data were height (\(\bullet \)) and diameter (\(\circ \)) measurements for *Pinus radiata* progeny tests in the Kaingaroa (---) and Myora (-- -- --) Forests. Complete data for the Kaingaroa test were 33 to 50 individuals and for the Myora test 29 to 30 individuals per family.
tween rankings of families calculated for complete data compared with their rankings calculated for each level of n, and results plotted in Figure 2. It was encouraging to find close agreement not only between the two traits and two sites studied, but also between the general results of this subsampling study and the previous mathematical solutions. Subsamples of n = 20 or more individuals per family were found to rank families in essentially the same order as the complete data (rank correlations were consistently above 0.8; Figure 2). Subsamples of n = 10 individuals provided correlations of between 0.78 and 0.89, which indicate reasonably close agreement in the rankings of families. However, sampling fewer than 10 individuals per family led to a marked decline in the reliability of family evaluations. Rank correlations for n = 5 individuals ranged from 0.77 to an unacceptably low 0.56.

Ordinary product-moment correlations were also calculated between family means estimated for complete data and means estimated for each level of n, and the absolute values of these correlations were found to be almost identical to corresponding rank correlations. The reason for preferring rank correlations in this study is because we consider the main purpose of progeny testing is to rank families so the best are chosen for future breeding.

Lee (1972a, b) found trends similar to those in Figure 2 for subsamples of height, specific gravity and tracheid length data of 27 seed sources of P. nigra. In this case product-moment correlations of over 0.96 were observed between seed source means calculated for n = 40 individuals per family (complete data) and corresponding means calculated for either n = 30 or 20 individuals, while correlations for n = 10 remained high at between 0.86 and 0.83. Lee did not consider samples of fewer than 10 individuals per family.

Another way of quantifying the reliability of family rankings is to list say the top 20% of families according to each level of n and count how many of these families are also ranked in the top 20% for the complete data. The top 20% of families represent the top five families for the Kaingaro progeny test and approximately the top 10 families for the Myora test. Table 2 reveals that subsamples of 10 or more individuals per family were successful in detecting at least four of the top five families for the Kaingaro test and at least eight of the top 10 families for the Myora test. The subsamples of five individuals per family were surprisingly successful in correctly identifying three and seven of the top families for the Kaingaro and Myora tests, respectively. These findings suggest that the accuracy of the n = 10 (and perhaps the n = 5) samples would be sufficient for most practical breeding purposes. The results in Table 2 tend to support the conclusion of Robertson (1957) that genetic gain from progeny testing is maximized by measuring no more than five individuals per family in order to devote more resources to testing more families.

Family Rankings for Different Plot Size and Replication

Here we subsampled height and diameter data from another first-generation progeny test of P. radiata in the Myora Forest to determine the accuracy of family evaluations when either 12 or 24 individuals per family are tested under different combinations of plot size and numbers of plot replications. Subsamples of n = 12 and 24 individuals have been chosen because they are convenient denominators for the particular set of data, and these numbers of offspring approximate the range we recommend for progeny testing. Other studies of plot size in progeny testing are based on larger values for n (e.g. Johnston and Samuel 1974; n = 36 or 40). The following subsampling of experimental data to determine optimum plot size will tend to bias against smaller plots because no account is taken of the effect of decreased block size and therefore more efficient blocking under smaller plots. Hence the method is useful mainly for placing an upper limit on plot size (Correll 1978).

The progeny data we have used includes 28 half-sib families (open-pollinated in clonal orchards) which were measured 4½ years after planting. The field design of the progeny test is randomised complete blocks with 12 replications of six-tree row plots; n = 66 to 72 individuals were measured per family. The mean height of trees was 9.8 m (σ = 1.0 m) and the mean diameter was 14.4 cm (σ = 2.2 cm). In the case of the n = 12 subsamples, the data were reduced to the following combinations of plot size and plot replication: single-tree plots × 12 replications (1-tree × 10), 2-tree (row) × 6, 3-tree (row) × 4, 4-tree (row) × 3, and 6-tree (row) × 2. The n = 24 subsamples were 2-tree (row) × 12, 3-tree (row) × 8, 4-tree (row) × 6, and 6-tree (row) × 4. The subsampling of block replications was at random and two subsamples were taken for each plot size × replication treatment. The means of correlations for each pair of replicate subsamples are presented in Figure 3.

Rank correlations were determined between rankings of families calculated for complete data (6-tree × 12, with n = 66 to 72) and rankings calculated for the subsamples of 12 or 24 individuals per family. We must assume that the original plot size of six trees provides accurate rankings of families when a large number of progeny (i.e. n = 66 to 72) are tested. This assumption is supported by the findings of Johnston and Samuel (1974) and Correll (1978).

Figure 3 demonstrates that for n = 12 individuals the single and two-tree plot designs gave the most reliable rankings of families. The somewhat lower magnitude of the actual rank correlations for these 1-tree × 12 and 2-tree × 6 subsamples, compared with corresponding correlations for n = 10 in Figure 2, can probably be attributed to reduced variation between families which was evident in the present progeny test. For n = 24 individuals the plot sizes of three or fewer trees in a row were found to rank families in essentially the same order as the complete data (Figure 3).

Our general recommendation is that plot sizes of two trees or less should be used when progeny testing is based on around 10 to 20 individuals per family. Larger plot sizes entail correspondingly fewer plot replications and can lead to an unacceptable decline in accuracy of
Figure 3. — Correlations between rankings of families calculated for complete height and diameter data (6-tree row plots × 12 replications) for a Pinus radiata progeny test in the Myora Forest compared with rankings calculated for subsamples of 12 (—— ——) or 24 (-----) individuals per family. The subsamples of 12 individuals included the following combinations of plot size and replications: 1-tree plot × 12 replications, 2-tree × 6, 3-tree × 4, 4-tree × 3 and 6-tree × 2. The subsamples of 24 individuals included 2-tree × 12, 3-tree × 8, 4-tree × 6 and 6-tree × 4.

Family evaluations. Of course this recommendation is made from a study of just one species on one site, but the conclusions are largely commonsense and there seems little reason for doubt. Where progeny testing employs substantially more than 20 individuals per family, larger plot sizes appear to be acceptable (Johnstone and Samuel, 1974).

The use of single-tree plots in progeny testing has been a source of argument since they were recommended by Wright and Freeland (1960). Controversy has centred on the amount of heterogeneity which may be created in the genetic portion of error variance when single-tree plots are employed, and the effect (if any) such heterogeneity would have on analyses of variance (Siu and Failey 1961 versus Franklin 1971). This controversy is of little concern where progeny testing is used solely for the purpose of evaluating and ranking families as distinct from determining the statistical significance of the differences that exist between families. Missing values, which invariably occur with single-tree plots, can also complicate analyses of variance but provided their frequency is not too great they should have little effect on the reliability of family evaluations.

Discussion

Numbers of offspring and plot size for progeny testing have so far been studied from the standpoint of identifying best families for future breeding. However, the progeny tests themselves may have secondary functions, such as providing data to estimate genetic parameters or serving as a population for future selection. We will briefly discuss these secondary functions and their influence on numbers of offspring and plot size. We also consider progeny testing on more than one site, and the special case of all-or-nothing traits.

Robertson (1959) has determined that the optimum number of half-sib individuals per family for estimating heritability is approximately n = 4h². Since the inheritance of most commercial traits in forestry is around h² = 0.4 to 0.2 the optimum n should be around 10 to 20 individuals. This conclusion is supported by calculations of Harris (1984). Accurate estimation of low heritabilities (below say h² = 0.1) will obviously require many more offspring but, in terms of say expected genetic gain from individual selection, these heritabilities are often written off as being effectively zero (even though the economic importance of the trait may be high). The accurate estimation of genetic correlations appears to require more offspring than estimation of inheritance (Robertson 1959) but as Robertson has indicated, we may not need to know the genetic correlation as accurately as the heritability. In general there seems little conflict, as far as numbers of offspring and plot size is concerned, between accurate evaluation of families and estimation of genetic parameters.

A fundamental conflict does occur where progeny tests are used as breeding populations for future selection because, in advanced-generation breeding programs, selection is within-families as well as among families (Burdon and Shipbourne 1971). Maximising genetic gain from individual selection within-families requires as many individuals as possible in each family (to ensure the highest possible intensity of selection) and large plots (to increase the efficiency of comparisons among individuals; Burdon et al., 1977). Considerations of cost may favour progeny tests doubling as a breeding population, but considerations of experimental design certainly favour specialised progeny tests to identify best families and specialised breeding populations to facilitate selection within these best families (e.g. Cotterill 1984). The progeny tests may have 10 to 20 individuals per family planted in one or two-tree plots, while the breeding population should have as many individuals as possible per family which could be planted in very large unreplicated plots.

Where progeny testing is conducted across multiple sites, we recommend that each test have sufficient individuals per family (i.e. n = 10 to 20) to allow it to stand alone. This both provides insurance against failure of other tests and allows flexibility to either select families (parents) for performance at a particular site, or pool results and use mean performance across sites at the selection criterion. These options for selection are of course relevant where family × site interactions are important.

Hsu (1974) has suggested that all-or-nothing traits may be a special case for determining how many offspring are required to evaluate genotypic performance. All-or-nothing traits are binomially distributed and therefore violate the assumption of normality required for the mathematical Solutions 1 and 2. However, in practice, the problem does not appear to be too serious. The single-tree plot Myora data which we subsampled for this study included an all-or-nothing score for fork height (i.e. score 0 = no fork, 1 = forked main stem) and although results are not reported in Figure 2 the trait was found to behave similarly to height and diameter, with 10 individuals per family providing reasonably accurate rankings of families. Other traits not reported for the Myora and Kanganaroa data were subjective scores (using 5 or 9-point scales) of stem straightness and crown form. These scores had approximately normal distributions and behaved similarly to the growth traits.

General Recommendation

Our general recommendation is that 10 to 20 individuals per family, growing in single-tree plots or two-tree non-
The Use of Competition Indices in Advanced-Generation Selection

By G. A. Tuskan and C. R. McKinley

Texas A & M University, College Station, Texas 77843, USA

(Received 16th January 1984)

Summary
Two first-generation open-pollinated progeny tests of loblolly pine (Pinus taeda L.) were used to test the usefulness of four competition indices in advanced-generation selection procedures. In the five-year-old test all competition indices demonstrated an overall lack of competition. However, among the basal area classes within the five-year-old test there were differences in the competitive environment. Below basal area of 4.6 m²/ha there was no competition among adjacent trees, between basal areas 4.6 and 9.2 m²/ha competition appeared to stimulate growth, and above basal area 9.2 m²/ha competition acted to diminish growth. In the 15-year-old test, within all basal area classes, all four indices functioned well as indicators of the past competitive environment. The best overall indicator was the Proportional Area Index; the Weighted Tall appeared to be the most practical. The changes in the competitive environment at age five, and the consistently negative relationship between each of the four indices and the subject tree measurements indicates that individuals within families could be selected based upon 1) the subject tree’s measurements prior to the onset of competition and 2) those individuals, after the onset of competition, whose measurements occur above the regression line of the competition index predicting the subject tree’s diameter or height.

Key words: Interspecific-competition, advanced-generation selection, Pinus taeda, progeny testing.

Zusammenfassung
Die Ergebnisse aus zwei Nachkommenschaftsprüfungen bei Pinus taeda L. der ersten Generation wurden ausgewertet, um zu prüfen, in welcher Weise vier verschiedene Konkurrenzindizes in Selektionsverfahren für die folgenden Generationen nützlich sein können. In der Nachkommenschaftsprüfung im Alter 5 zeigte sich, daß alle vier Indizes noch keine Konkurrenz aufzeigten konnten. Es konnten jedoch Unterschiede im Konkurrenzverhalten beobachtet werden, wenn die Bäume nach dem Querschnitt am Stammfuß klassifiziert worden waren. Unterhalb eines Stammquerschnittes von 4.6 m²/ha gab es keine Konkurrenz zwischen benachbarten Bäumen, bei Bäumen mit einem Stammquerschnitt zwischen 4.6 und 9.2 m²/ha scheint Konkurrenz das Wachstum zu fördern und bei einem Stammquerschnitt über 9.2 m²/ha vermindert Konkurrenz das Wachstum. In dem Test im Alter 15 konnten die vier Konkurrenzindizes die Konkurrenzsituation früherer Jahre gut beschreiben und zwei innerhalb der Stammquerschnittsklassen. Der beste Konkurrenzwert war der Proportional Area Index, der Weighted Tally Index erschien aber am praktischsten. Die Änderung in der Konkurrenzsituation bei fünfjährigen Bäumen und die negative Be-