respiration response to high temperature or recovery from effects of high temperature.

Literature Cited

The Inheritance of Compression Wood and its Genetic and Phenotypic Correlations with Six Other Traits in Five-Year-Old Loblolly Pine

By C. J. A. Shelbourne, B. J. Zobel, and R. W. Stonecipher

(Received for publication October 10, 1967)

Introduction

The inheritance of compression wood has not previously been directly studied or for that matter, even seriously considered. It is the common belief that compression wood is formed as a direct response to inclination of the tree bole from the vertical. This explanation presupposes that trees within a species will not differ appreciably in their response to a given amount of inclination from the vertical. In fact, Westing (1965,p. 434), in his comprehensive review of all aspects of compression wood, went so far as to say:

"Little would be gained by such a study, because structure, pattern of occurrence, and extent of formation of compression wood are remarkably uniform from individual to individual and from species to species."

This statement appears to be too sweeping. Evidence is presented in this paper that direct as well as indirect genetic control of compression wood formation exists and considerable inter- and intra-specific variation in proportions of compression wood occurs.

There is good evidence that bole straightness is quite strongly inherited, at least in Southern pines. Perry (1960) and Godward and Strickland (1964) both showed that spiral crook in loblolly pine is heritable; McWilliam and Florence (1955) and Nikles (1960) reported large gains in straightness for open and control pollinated progenies from select parents. In a study of six-year-old open pollinated progenies of select trees, Wossen (1960) found straightness to be of the most strongly inherited characteristics. Evidence from a well designed heritability study of loblolly pine (Shelbourne, 1966) also supports these findings. On these grounds there is a strong probability of indirect inheritance of compression wood through genetic control of bole straightness.

Compression wood is also associated with branch development. It is found in the stem below the points of branch insertion (Zobel and Haught, 1962). The amounts and intensity of such compression wood development are believed to be related to branch angle itself which has been shown to be moderately heritable (e.g. Ehrenberg, 1963; Campbell, 1958).

Inter-generic differences in response to a given amount of inclination of the stem were demonstrated as early as 1888 by Konunchuk (Westing, 1965), who found that Norway spruce formed compression wood more strongly than Scots pine. Similar differences in response to slight inclination were observed for white spruce and red pine by Randol (1956). Large intra-specific differences in compression wood percentage by volume (up to 50%) were reported by Low (1964). He found that differences between trees in compression wood percent were only very weakly correlated with size and number of stem deviations, indicating that compression wood percent was in fact behaving as a phenotypically variable, independent trait. It is not unreasonable to infer from this that, in direct contradiction to Westing's statement, study of compression wood might well yield evidence of inheritance of this characteristic.

The investigation5) reported here involved a study of compression wood percentage, specific gravity, and growth rate in a number of open pollinated (half sib) families of loblolly pine. This investigation is one of a series (Shelbourne loc. cit.) dealing with the inheritance of bole straightness, with the effect of differing intensities of compression wood on specific gravity, tracheid length and spiral checking of tracheids, and also the variation and relationships among compression wood, bole straightness and other traits. The latter study revealed that the widely-held assumption that amounts of compression wood formed

5) This study was one of a series connected with the International Paper Company-North Carolina State Cooperative Loblolly Pine Heritability Project partially supported by N. S. F. Grant G-10689 and N. I. H. Grant GM 11546-03.
are strongly correlated with straightness and perpendicularity of tree bole, was wrong. Although the relatively small amounts of intense forms of compression wood (3 to 5% by volume) were positively correlated with straightness (i.e. crooked trees produced most of this "severe" compression wood), the rather large amounts of "non-severe" compression wood (25% by volume) showed a weak negative relationship with straightness. Thus, even though straightness has quite a high heritability, indirect genetic control of the proportion of compression wood by volume via genetic control of straightness is unlikely to be strong. Compression wood formation in both its causative and genetic aspects is therefore a more complex phenomenon than previously supposed, and needs intensive study.

Materials and Methods

1. **Experimental Design and Material**

The experimental design and the material used in this study were described in detail by Cecchi et al. (1962), Stonecypher et al. (1964), and Stonecypher and Zobel (1965). Open-pollinated seed was collected from randomly located parent trees growing in wild unselected stands of loblolly pine on a Piedmont-type site on the International Paper Company's Southland's Experiment Forest near Bainbridge, Georgia. Sufficient progenies from randomly selected parents were available to sample 49 half-sib families. These were growing in a randomised complete block design with four replications originally planted at 1 x 1 foot spacing, but progressively thinned to 1 x 3 feet spacing by harvests made in 1961 and 1962. In this study two trees per plot (eight trees in all) were harvested from each family at age five years. Trees averaged 7.7 feet tall and 1.0 inch in diameter at 0.5 foot above ground level at time of harvest.

The trees were cut 0.5 foot above the ground line and a segment about 10 inches long was removed from above the basal cut for examination in the laboratory. Total tree height and diameter outside bark at half total height were measured in the field. Diameter inside bark was measured on the laboratory samples. Cubic volumes of the trees were computed using an equation developed for small trees by Perry and Roberts (1964).

2. **Laboratory Methods**

The green, 10-inch-long samples were cut into four sections. The basal 3 inches were removed and discarded as being likely to contain atypical wood near the root collar. Two 0.1 inch-thick cross-sections were removed, one from the base and one from the top end of the sample. Two knot-free samples were removed from the remaining piece, one for specific gravity determination and the other for cellulose analysis.

Specific gravity was determined by the usual water displacement method and the dry weight to green volume ratio. After extraction by alcohol-benzene, the wood was dried and the dry weight to green volume ratio recalculated to give extracted specific gravity and resin content.

Compression wood was assessed by examining the two thin, 0.1 inch sections from each stem, over a light-box. Areas of compression wood were delineated and were then measured by a dot grid and expressed as a percentage of the cross sectional area of the stem. Compression wood was clearly visible in variable forms of dark to light brown, coloured bands and sickle-shaped areas, but it was not feasible to allocate different compression wood grades in this young material.

Alpha cellulose and holocellulose contents were estimated by the technique described by Zobel et al., (1966). It is a rapid survey method which has limitations in quantifying the relatively small differences that existed in the young trees used in this study. Because of this and because no inheritance pattern was found, cellulose will not be further dealt with in this paper.

Statistical Analysis

The methods of estimating heritability and genetic correlations and the assumptions and quantitative genetic theory involved for this experiment are described fully by Stonecypher (1967) and also more briefly by Stonecypher et al., (1964).

The use of analysis of variance and covariance techniques enables mean squares and mean products for replications, families, interaction of replication X families (plot error), and within plot error to be computed. The expected mean squares, expected covariances, and degrees of freedom for this analysis are shown in Table 1.

<table>
<thead>
<tr>
<th>Source</th>
<th>Degrees of Freedom</th>
<th>Expected Mean Squares a)</th>
<th>Expected Covariances b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replications</td>
<td>3</td>
<td>$s_w^2 + 2s_{wf}^2 + 8s_{ff}^2$</td>
<td>$s_{w12}^2 + 2s_{wf12}^2 + 8s_{ff12}^2$</td>
</tr>
<tr>
<td>Families</td>
<td>47</td>
<td>$s_w^2 + 2s_{wf}^2$</td>
<td>$s_{w12}^2 + 2s_{wf12}^2$</td>
</tr>
<tr>
<td>Replications within families</td>
<td>141</td>
<td>s_w^2</td>
<td>s_{w12}^2</td>
</tr>
<tr>
<td>Within plot</td>
<td>192</td>
<td>s_w^2</td>
<td>s_{w12}^2</td>
</tr>
</tbody>
</table>

a) s_w^2 = within plot variance.

b) s_{w12} = variance due to replication x family interaction, i.e. plot to plot variance.

$\hat{r_g} = \frac{s_{w12}}{\sqrt{s_w s_{w12}}}$$

The following genetic interpretations of components of variance and covariance were used in this study:

$s_{w}^2 = 1/4 \sigma_A^2$

$s_{w12} = 1/4 \sigma_{A1} \sigma_{A2}$

where: σ_A^2 = additive genetic variance

$\sigma_{A1} \sigma_{A2}$ = additive genetic covariance between traits 1 and 2.

s_{w} and s_{w12} — see Table 1.

Narrow sense heritability was computed on an individual tree basis by:

$\hat{h}^2 = \frac{s_{w12}}{s_w^2 + s_{wf}^2 + s_{tt}^2}$

where s_{w1}, s_{w12}, and s_{w2} are defined as in Table 1.

The genetic correlation was computed by:

$\hat{r_g} = \frac{s_{w12}}{\sqrt{s_w s_{w12}}}$
The phenotypic correlation was computed by:

\[r_{xy} = \frac{\text{Cov}_{12}}{\sqrt{\text{V}_1 \cdot \text{V}_2}} \]

where Cov_{12} = mean cross product for between families between traits 1 and 2

\[\text{V}_1 = \text{between family mean square for trait 1} \]
\[\text{V}_2 = \text{between family mean square for trait 2.} \]

The standard errors of variance components were computed using the following equation from Anderson and Bancroft (1952):

\[V(\sigma^2) = \frac{2}{C^2} \sum_{i=1}^{t} \frac{\text{V}_i^2}{\text{f}_i + 2} \]

where \(V(\sigma^2) \) = the variance of the component

\(C = \) coefficient of component

\[\sum_{i=1}^{t} \text{V}_i^2 = \text{the sum of the squared mean squares involved in the computation of } \sigma^2 \]

\(\text{f}_i = \) the degrees of freedom for each mean square.

Results and Discussion

1. Genetic variance and heritability estimates

Narrow sense heritabilities of the seven traits measured ranged from .95 to .23, compression wood percent having the highest value, followed by specific gravity. Heritabilities and genetic correlations were reported for specific gravity (extracted and unextracted), diameter (inside and outside bark), height and volume by Stonecipher and Zobel (1965). Heritabilities for compression wood percent and these traits are shown in Table 2 for purposes of comparison.

An index of reliability of these estimates is given in Table 2 by the standard error of the family component of variance, \(\sigma^2_f \), which is shown as a ratio of the component itself. F ratios with their probability levels are also shown for each family mean square. If the standard error ratio is more than 0.5 then the heritability estimate should be regarded as being only an indication of a trend.

Compression wood shows a remarkably high heritability, highest in fact of any characteristic assessed in both open pollinated and control pollinated phases of the heritability study. As reported previously, (Stonecipher et al., 1964, Stonecipher and Zobel, 1965) heritability of specific gravity, extracted and unextracted, has remained high and fairly constant from age two through age five years, while heritabilities of growth characteristics such as height, diameter, and volume show lower values.

The frequency distribution of family mean compression wood percentages is shown in Figure 1. It is highly skewed with no families in the zero to 5% class. The majority of families contained 5 to 25% compression wood with very few with larger amounts. Arcsin square root transformation effectively normalized this distribution.

![Figure 1. — Frequency distribution of family mean compression wood percent for 5 years old loblolly pine.](image)

An additional analysis was made of within-tree variation in compression wood. Two samples were taken from each tree; they revealed considerable within-tree sampling error. The within-tree component of variance for untransformed compression wood percent (\(\sigma^2_{\text{wt}} \)) was about three times larger than the within-plot component \((\sigma^2_{\text{wp}}) \). This indicated that within-tree variation in compression wood was an important source of variation and this could be reduced by taking several samples per tree. However, heritability (of untransformed compression wood percent) dropped only from 1.14 to .91 if it was recomputed on a within-tree basis (including both \(\sigma^2_{\text{wt}} \) and \(\sigma^2_{\text{wp}} \) in the denominator), indicating this characteristic is still strongly inherited, in spite of considerable within-tree sampling error.

<table>
<thead>
<tr>
<th>Traits</th>
<th>(h^2)</th>
<th>(S. E. (\sigma^2_f))</th>
<th>(F) Ratio (Families)</th>
<th>Ratios of Variance Component to Sum of All Components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(\frac{\text{V}_f^2}{\text{f}_i})</td>
<td>(\frac{\text{V}_f^2}{\text{f}_t})</td>
<td>(\frac{\text{V}_r^2}{\text{f}_r \text{f}_t})</td>
</tr>
<tr>
<td>Arcsin Compression Wood Per cent</td>
<td>.95</td>
<td>.29</td>
<td>3.30**</td>
<td>.02</td>
</tr>
<tr>
<td>Compression wood Per cent</td>
<td>1.14*</td>
<td>.28</td>
<td>3.84**</td>
<td>.02</td>
</tr>
<tr>
<td>Extracted Specific Gravity</td>
<td>.64</td>
<td>.34</td>
<td>2.53**</td>
<td>.02</td>
</tr>
<tr>
<td>Unextracted Specific Gravity</td>
<td>.73</td>
<td>.32</td>
<td>2.86**</td>
<td>.02</td>
</tr>
<tr>
<td>Diameter Inside Bark</td>
<td>.28</td>
<td>.68</td>
<td>1.49*</td>
<td>.01</td>
</tr>
<tr>
<td>Height</td>
<td>.34</td>
<td>.59</td>
<td>1.57*</td>
<td>.02</td>
</tr>
<tr>
<td>Diameter Over Bark</td>
<td>.32</td>
<td>.55</td>
<td>1.81*</td>
<td>.01</td>
</tr>
<tr>
<td>Volume</td>
<td>.23</td>
<td>.73</td>
<td>1.42</td>
<td>0</td>
</tr>
</tbody>
</table>

\(a \) Compression wood per cent data was not normally distributed (hence \(h^2 \) value \(> 1.0 \)) but arcsin square root transformation normalized its distribution and resulted in a lower heritability.

* Significant at the .05 per cent level.

** Significant at the 1 per cent level.
The very high heritability found for compression wood was quite unexpected. Although it is known that bale straightness shows moderately high heritability with values as high as .42 for 5-year-old lobolly pine (Sheilbourne, loc. cit.) the relatively weak relationship between severe compression wood and straightness parameters and its very weak inverse relationship with non-severe compression wood (Sheilbourne, loc. cit.), indicate that the high heritability of compression wood can only be explained to a certain extent by association with bale straightness. It is possible that the compression wood observed in the young trees sampled in this study is not closely related to any particular environmental stimulus. If so, the amount of compression wood is a trait whose variable expression is largely under direct genetic control and not governed mainly by stem inclination, as previously thought. However the intensity of compression wood development appears to be largely dependent on bale inclination. This hypothesis is being tested by further studies.

2. Phenotypic and Genetic Correlations

All genetic and phenotypic correlations between the traits studied are shown in Table 3. Strömcqterphen and Zobel (1965) previously reported genetic correlations for specific gravity (unextracted), specific gravity (extracted), diameter inside bark, height, diameter outside bark, and volume, and emphasized the relatively low degree of reliability of genetic correlations which are even less reliable than the components of variance and covariance from which they are computed. The phenotypic correlations were also computed, particularly to examine relationships between traits whose family components of variance and covariance had very high standard errors, and whose genetic correlations were, therefore, highly unreliable.

Traits with low heritability and a high standard error of the family component of variance σ_f^2 showed a large decrease from genetic to phenotypic correlation. However in all cases the algebraic signs of the correlations and the relative ranking of correlations for the different traits were the same for both genetic and phenotypic values.

Relationships between compression wood and other traits demonstrated by genetic and phenotypic correlations are in general agreement with those found in other studies by the author (Sheilbourne, loc. cit.) and those described in the literature, e. g. Low (1964). Compression wood percent shows low positive genetic and phenotypic correlations with height (.37 and .21), diameter (.38 and .26) and volume (.74 and .40). Wider rings than normal are known to be associated with compression wood development within the stem and an association has been demonstrated in older trees between amount of compression wood and growth rate. Fairly low negative phenotypic correlations are evident between compression wood and specific gravity (−.22) in this study. This agrees with the low negative correlation (−.19) between specific gravity and both severe and slight compression wood found in a study of 12-year-old and older material (Sheilbourne, loc. cit.). Results from another study (Sheilbourne and Ritchie, 1967) indicated that overall specific gravity was unaffected by compression wood, but that specific gravity of compression wood in the summerwood portion of the annual ring was lower than normal wood. Depending on the relative amounts of summer- and springwood, this could produce a negative relationship. These relationships between specific gravity and compression wood shown here are in direct contradiction to reports in the literature. (See Sheilbourne and Ritchie, 1967, for discussion of this problem.)

The high heritabilities of .73 for specific gravity and .95 for compression wood indicate there is a large amount of additive genetic variance for these characters present in the natural, unselected population sampled. It is necessary however to be cautious about predicting heritability of compression wood in older trees from the results obtained with five-year-old trees grown in a nursery under severe competition.

Genetic and phenotypic correlations are reported for all traits. The proportion of variation accounted for by most of these correlations is not large except between such obviously correlated growth traits as diameter and volume. The relationships demonstrated between specific gravity, compression wood, and growth rate, are all in general agreement with those reported in the literature. The one exception is the lack of a strong positive relationship between specific gravity and total compression wood. This weak negative correlation is confirmed by the other studies on Southern pines which will be published soon.

Although straightness of the saplings whose characteristics were examined was not assessed, straightness of other members of these same half-sib families was examined. A weak negative relationship ($r = −.17$) existed between amounts of compression wood and straightness.

<table>
<thead>
<tr>
<th>Traits</th>
<th>Specific Gravity</th>
<th>D. I. B.</th>
<th>H.</th>
<th>D. O. B.</th>
<th>Vol.</th>
<th>Compression Wood %</th>
<th>Arsenic Compression Wood %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unextracted</td>
<td>G*</td>
<td>.94</td>
<td>.75</td>
<td>.32</td>
<td>.75</td>
<td>.82</td>
<td>.30</td>
</tr>
<tr>
<td>Extracted</td>
<td>P**</td>
<td>1.03</td>
<td>.47</td>
<td>.16</td>
<td>.51</td>
<td>.45</td>
<td>.24</td>
</tr>
<tr>
<td>Unextracted</td>
<td>G</td>
<td>.48</td>
<td>.82</td>
<td>.36</td>
<td>.79</td>
<td>.86</td>
<td>.26</td>
</tr>
<tr>
<td>Extracted</td>
<td>P</td>
<td>.48</td>
<td>.18</td>
<td>.49</td>
<td>.45</td>
<td>.18</td>
<td>.17</td>
</tr>
<tr>
<td>Diameter Under</td>
<td>G</td>
<td>.90</td>
<td>.90</td>
<td>.91</td>
<td>.98</td>
<td>.40</td>
<td>.42</td>
</tr>
<tr>
<td>Bark</td>
<td>P</td>
<td>.62</td>
<td>.62</td>
<td>.82</td>
<td>.90</td>
<td>.25</td>
<td>.28</td>
</tr>
<tr>
<td>Height</td>
<td>G</td>
<td>.78</td>
<td>.51</td>
<td>.81</td>
<td>.85</td>
<td>.37</td>
<td>.48</td>
</tr>
<tr>
<td>Diameter Outside</td>
<td>G</td>
<td>.96</td>
<td>.96</td>
<td>.96</td>
<td>.81</td>
<td>.21</td>
<td>.27</td>
</tr>
<tr>
<td>Bark</td>
<td>P</td>
<td>.93</td>
<td>.93</td>
<td>.93</td>
<td>.74</td>
<td>.25</td>
<td>.28</td>
</tr>
<tr>
<td>Volume</td>
<td>G</td>
<td>.74</td>
<td>.74</td>
<td>.74</td>
<td>.74</td>
<td>.40</td>
<td>.40</td>
</tr>
<tr>
<td>P</td>
<td>**</td>
<td>.40</td>
<td>.40</td>
<td>.40</td>
<td>.40</td>
<td>.40</td>
<td>.40</td>
</tr>
</tbody>
</table>

* G indicates genetic correlation.

** P indicates phenotypic correlation.

46
This provides further evidence that compression wood and bollie straightness are not closely, directly and quantitatively related, and that amounts of non-severe compression wood appear to be under direct, and quite strong genetic control.

Summary

Heritability of compression wood percent and its phenotypic and genetic correlations with specific gravity, diameter, height and volume were estimated from a study of 48 open pollinated families from randomly selected parent trees of bollie pine. The offspring were grown in a nursery and sampled at age five years and average height 7.7 ft.

Compression wood was delineated on two cross sections from the lower part of the stem of each tree and expressed as a weighted average percentage by volume. Compression wood was found to have the highest narrow sense heritability of any of the traits measured (95) followed by specific gravity (73), while volume was least heritable (23).

In its relationships with other traits, compression wood percent showed low positive genetic and phenotypic correlations with height (37 and .21), diameter (.38 and .26) and volume (.74 and .40). Fairly low negative correlations were found with specific gravity (--.26 and --.22). This relationship is in direct contradiction to reports in the literature though is supported by the author's studies on Southern pines.

Though no direct measurement of bollie straightness was made on the trees examined for compression wood etc., straightness assessed on other members of the same families showed a very weak negative relationship with their family mean compression wood percentages (r = --.17) indicating that although compression wood percent is strongly inherited this is not due to indirect inheritance and high genetic correlation with bollie straightness, itself a highly heritable trait.

References

Buchbesprechungen

