Completion report of the ITTO project PD 620/11 Rev.1 (M):

Development & implementation of a species identification and timber tracking system with DNA fingerprints and s isotope in Africa

#

ANNEX 3

Technical report on wood anatomy

ITTO project "Development and implementation of a species identification and timber tracking system in Africa with DNA fingerprints and stable isotopes"

Report: Wood Anatomy

PD Dr. Gerald Koch and M.Sc. Volker Haag (Thünen Institute of Wood Research)

Introduction

The control of internationally traded timber requires reliable methods for a doubtless identification of the wood species (botanical taxa). The clear identification of the timber is also important for the assessment of product properties "consumer protection" as lower-grade substitute timbers are imported at a distinctly increasing rate. In the context of these major challenges wood anatomy provides the most valuable support for practical wood identification. The methods for the macroscopic and microscopic wood identification are basically established and routinely applied since more than 100 years.

Macroscopic wood identification is based on observations in the three anatomical planes of a wood specimen: transverse (perpendicular to the stem axis), radial (parallel to the stem axis) and tangential (parallel to the stem axis) which can be observed with the unaided eye or with the help of a magnifying lens. The method is suitable for a first reliable determination of the declared taxon. For the macroscopic wood identification, the transverse planes of the specimens are smoothed using a cutter or carpet knife and examined with a hand lens (recommended magnification 10-12x, see Fig. 1).

Fig. 1. Preparation of the transverse plane and macroscopic observation / identification of the timber

For "official" or "judicable" wood identification, microscopic analyses are routinely conducted. Using light microscopic techniques, up to 100 anatomical characters can be used which are internationally standardized according to the IAWA lists of "Microscopic Features for Hardwood and Softwood Identification". The defined microscopic features describe the individual tissue types: vessels, parenchyma and fibres and provide additional information about mineral inclusions as part of a wood "anatomical fingerprint". Overall, the microscopic description of about 6,700 wood timbers (wood genus/species) are currently available and documented in several computerized databases, e.g., InsideWood (2004 onwards) or Commercial timbers (delta-intkey, 2000 onwards).

Material and methods

The Thünen Institute of Wood Research (Wood Anatomical Laboratory) received two collectives of solid wood samples (overall 50 specimens) for microscopic wood identification and verification of the declared botanical nomenclature "blind test on species declaration".

One collective (25 samples with the codes RM_2014 and X2) was provided by WWF, Deutschland (contact person: J. Zahnen). The second collective (25 sample with the codes G2S_S) was submitted by G2S (contact person for the documentation of the results: G. Yene).

For the microscopic wood identification thin sectionings (10 to 20 μ m thickness in the three anatomical directions: transversal, radial and tangential) were cut on a sliding microtome from aligned wood blocks (dimension of approx. 5 - 10 mm³) of the individual 50 samples (Fig. 2).

The wood anatomical structures of the specimens were microscopically investigated using a standard light microscope with polarized light device (magnification of the objectives 4x to 40x) and directly

compared with reference slides (vouchered material of the scientific wood collection RBHw*) and microscopic wood slides prepared within the ITTO project (Fig. 3, Master thesis of. V. Haag).

Fig. 2. Preparation (microtome) and microscopic analysis of the wood sections

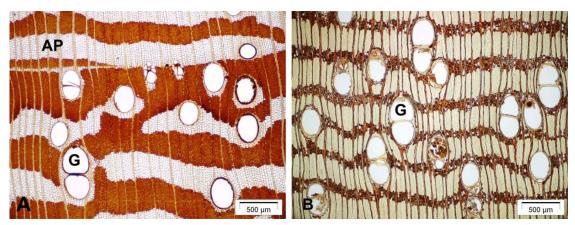


Fig. 3. Microscopic transverse sections of Millettia spp. (left) and Lophira alata (right); references for the microscopic wood identification

The wood anatomical structures of the microscopically identified timber are also compared with the descriptions in the computerised database *Commercial timbers* in the Delta-Intkey-System. This very established database was also applied for the microscopic wood identification of the blind-test samples.

Results

The results of the microscopic wood identification are presented in the following tables Part I (samples provided by the WWF) and Part II (samples provided by the Thünen Institute of Forest Genetics) with the specified information/columns: sample codes, claims, results of microscopic identification and comments.

The evaluation of the provided results reveals the high capability of the wood anatomical analyses: All individual samples (100%) of both collectives were clearly identified on the genus level which defines the relevant trade names according to the EN Standard 13556 "Nomenclature of timbers used in Europe" and the requirements of the European Timber Regulation (EUTR). The identification of individual wood species, e.g. Entandrophragma cylindricum or Triplochiton scleroxylon, etc., was successfully achieved for 56% (part I) and 60% (part II) of the analysed samples. Comments to the "maximal" possible differentiation or identification of the individual samples are provided in detail (see table 1 and 2). The investigated wood blocks and microscopic slides are carefully preserved and documented at the Thünen Institute of Wood Research for additional microscopic analyses or verification.

*RBHw = acronym of the Thünen Wood Collection according to the Index Xylariorum

Table 1: Results of the microscopic wood identification - Part I: Collectives RM_2014 and X2 provided by WWF, Deutschland

Sample code	Claims on species name	Results of lab	Results of the microscopic wood identification (wood anatomy)	Comments
RM_2014_03	Milicia excelsa	false *	Millettia spp. = Wengé or Panga Panga	correct trade name Wengé / Panga Panga
RM_2014_04	Erythrophleum ivorense	correct ✓	Erythrophleum spp. = Tali	the individual species within the genus Erythrophleum can't be distinguished microscopically
RM_2014_13	Khaya ivorensis	correct ✓	Khaya spp. = Khaya	the individual species within the genus Khaya can't be distinguished microscopically
RM_2014_37	Erythrophleum suaveolens	correct ✓	Erythrophleum spp. = Tali	the individual species within the genus Erythrophleum can't be distinguished microscopically
RM_2014_39	Entandrophragma utile	false *	Aucoumea klaineana = Okoumé	correct trade name Okoumé
RM_2014_42	Entandrophragma angolense	false *	Nauclea diderrichii = Bilinga	correct trade name Bilinga
RM_2014_45	Afzelia pachyloba	correct ✓	Afzelia spp. = Afzelia	the individual species within the genus Afzelia can't be distinguished microscopically
RM_2014_48	Entandrophragma cylindricum	false *	Entandrophragma angolense = Tiama	correct declaration Tiama
RM_2014_49	Aningeria robusta	false *	Baillonella toxisperma = Moabi	correct declaration Moabi
RM_2014_59	Aucoumea klaineana	false *	Afzelia spp. = Afzelia	correct trade name Afzelia
RM_2014_60	Cylicodiscus gabunensis	false *	Entandrophragma utile= Sipo	correct trade name Sipo
X2-57	Pterocarpus soyauxii	false *	Pericopsis elata = Afrormosia	correct trade name Afrormosia (CITES-species)
X2-58	Baillonella toxisperma	false *	Pouteria spp. (Aningeria spp.) = Aningré	correct trade name Aningré
X2-59	Afzelia bipindensis	correct ✓	Afzelia spp. = Afzelia	the individual species within the genus Afzelia can't be distinguished microscopically
X2-65	Guibourtia ehie	false *	Guibourtia spp. = Bubinga	The wood anatomical characters show best agreement with Bubinga ; the individual species G. ehie = Ovengkol can be excluded
X2-66	Millettia laurentii	false *	Milicia cf. excelsa = Iroko	correct trade name Iroko
X2-67	Khaya grandiflora	correct ✓	Khaya spp. = Khaya	the individual species within the genus Khaya can't be distinguished microscopically
X2-68	Milicia regia	correct ✓	Milicia spp. = Iroko	the individual species within the genus Milicia can't be distinguished microscopically
X2-69	Terminalia superba	correct ✓	Terminalia superba = Limba	correct declaration
X2-74	Pericopsis elata	false *	Pterocarpus soyauxii = Padouk	correct trade name Padouk
X2-75	Nauclea diderrichii	false *	Aucoumea klaineana = Okoumé	correct trade name Okoumé
X2-76	Khaya ivorensis	false *	Entandrophragma cylindricum = Sapelli	correct trade name Sapelli
X2-78	Triplochiton scleroxylon	correct ✓	Triplochiton scleroxylon = Abachi	correct declaration
X2-79	Pericopsis elata	false *	Cylicodiscus gabunensis = Okan	correct trade name Okan
X2-81	Lophira alata	correct ✓	Lophira alata = Bongossi	correct declaration

Table 2: Results of the microscopic wood identification - Part II: Collective G2S_S provided by the Thünen Institute of Forest Genetics

Sample code	Claims on species name	Result of lab	Result of the microscopic wood identification (wood anatomy)	Comments
G2S_S_1.0	Guibourtia ehie	false *	Afzelia spp. = Afzelia	correct trade name Afzelia
G2S_S_1.5	Baillonella toxisperma	false *	Afzelia spp. = Afzelia	correct trade name Afzelia
G2S_S_2.0	Khaya anthotheca	correct ✓	Khaya spp. = Khaya	the individual species within the genus Khaya can't be distinguished microscopically
G2S_S_3.5	Baillonella toxisperma	correct ✓	Baillonella toxisperma = Moabi	correct declaration
G2S_S_5.0	Entandrophragma cylindricum	false *	Entandrophragma angolense = Tiama	correct trade name Tiama
G2S_S_8.0	Entandrophragma candollei	false *	Entandrophragma utile = Sipo	correct trade name Sipo
G2S_S_8.5	Entandrophragma cylindricum	false *	Khaya spp. = Khaya	correct trade name Khaya
G2S_S_10.0	Milicia excelsa	false *	Erythrophleum spp. = Tali	correct trade name Tali
G2S_S_11.5	Guibourtia spp.	correct ✓	Guibourtia spp. = Bubinga	correct declaration
G2S_S_13.0	Lophira alata	correct ✓	Lophira alata = Bongossi	correct declaration
G2S_S_13.5	Lophira alata	correct ✓	Lophira alata = Bongossi	correct declaration
G2S_S_14.0	Erythrophleum suaveolens	false *	Milicia spp. = Iroko	correct trade name Iroko
G2S_S_15.0	Milicia regia	correct ✓	Milicia spp. = Iroko	the individual species within the genus Milicia can't be distinguished microscopically
G2S_S_16.5	Millettia laurentii	correct ✓	Millettia spp. = Wengé (Panga Panga)	Millettia laurentii = Wengé and Millettia stuhlmannii = Panga panga can't be distinguished microscopically
G2S_S_18.5	Khaya spp.	false *	Pericopsis elata = Afrormosia	correct trade name Afrormosia (CITES-species)
G2S_S_20.0	Terminalia superba	correct ✓	Terminalia superba = Limba	correct declaration
G2S_S_21.5	Pterocarpus soyauxii	correct ✓	Pterocarpus soyauxii = Padouk	correct declaration
G2S_S_24.0	Triplochiton scleroxylon	correct ✓	Triplochiton scleroxylon = Abachi	correct declaration
G2S_S_25.5	Entandrophragma utile	false *	Mansonia altissima = Mansonia, Béte	correct trade name Mansonia note: Mansonia doesn't belong to the ITTO- species list of the 21 selected taxa
G2S_S_30.5	Triplochiton scleroxylon	correct ✓	Triplochiton scleroxylon = Abachi	correct declaration
G2S_S_33.5	Erythrophleum ivorense	false *	Lovoa trichilioides = Dibétou	correct trade name Dibétou note: Dibétou doesn't belong to the ITTO- species list of the 21 selected taxa
G2S_S_35.5	Afzelia spp.	correct ✓	Afzelia spp. = Afzelia	correct declaration
G2S_S_38.5	Nauclea diderrichii	false *	Guarea spp. = Bossé	correct trade name Bossé note: Bossé doesn't belong to the ITTO-species list of the 21 selected taxa
G2S_S_41.5	Aningeria robusta	false *	Mansonia altissima = Mansonia, Béte	correct trade name Mansonia note: Mansonia doesn't belong to the ITTO- species list of the 21 selected taxa
G2S_S_47.5	Cylicodiscus gabunensis	correct ✓	Cylicodiscus gabunensis = Okan	correct declaration

Conclusions

Regarding the role of wood anatomy in the control of internationally traded timber -successfully applied within the ITTO blind test- it can be clearly stated that the microscopic analysis is currently the most feasible and competitive method to identify wood. The microscopic analysis allows access to a large number of references (anatomical description of about 6,700 wood species) including the increasingly traded "lesser known species". Wood anatomy is routinely applied in the daily control of wood and wood products and false declarations can be proven in a short time. However, the important information about the geographic origin of the timber can't be determined by wood structure. To obtain this information, an interdisciplinary combination of genetic-, isotope-, and microscopic techniques is a very feasible solution. In general, the methods of macroscopic and microscopic wood identification can be relatively easy transferred to international working groups involved in the control of timber trade (relative low investment costs for the microscopic techniques). However, the reliable identification based on microscopic wood structure requires considerable professional expertise, a rather sophisticated infrastructure, and a well-sorted reference wood collection (Fig. 4).

Fig. 4. Scientific wood collections at the Thünen Institute of Wood Research, Hamburg