

CRITICAL ANALYSIS OF THE GHG CALCULATION METHODOLOGY OF THE EUROPEAN RENEWABLE ENERGY DIRECTIVE FOR THE CASE OF PALM OIL IN INDONESIA

Dr. Heinz Stichnothe, Thuenen Institute of Agricultural Technology

Indonesian Palm Oil Conference (IPOC), Nusa Dua, Bali, 2014

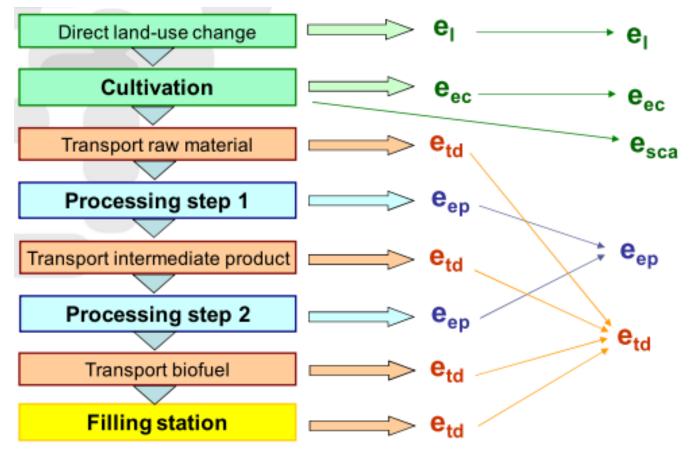
Agenda

- European Renewable Energy Directive (EU-RED)
- Calculation methodology
- Assumptions
- Reality check
- Results
- Conclusions
- Acknowledgement

DIRECTIVE 2009/28/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 April 2009 renewable sources

on the promotion of the use of energy from

<u>Aims: 20% share of renewable energy</u>, 10% share of renewable energy in transport by 2020


Sustainability criteria:

- GHG savings at least 35% (50% from 2017)
- Raw material not taken from land (after 2008) ٠
 - with high biodiversity value
 - with high carbon stock
 - Designated for nature protection, endangered species.
- Compliance with ILO conventions

Detailed calculation methodology and default values in Annex V

Calculation methodology

GHG-savings [%] = $(GHG_{fossil} - GHG_{biofuel})*100/GHG_{fossil}$ (with 83.6 g CO_{2eq}/MJ)

Assumptions - default values

- EFB/compost returned to the plantation, but...
- CPO and CPKO is converted to biodiesel
- Biodiesel production in Europe

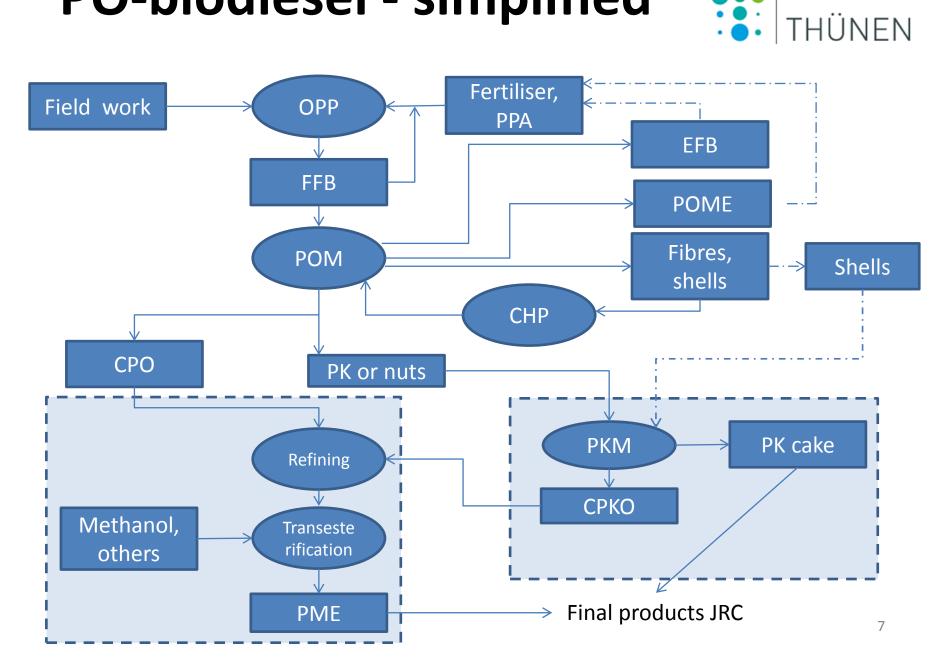
Default values:

- Fertilisers, PPA, diesel, yield
- OER 22.5%
- Transport distance
- Storage

www.biograce.net

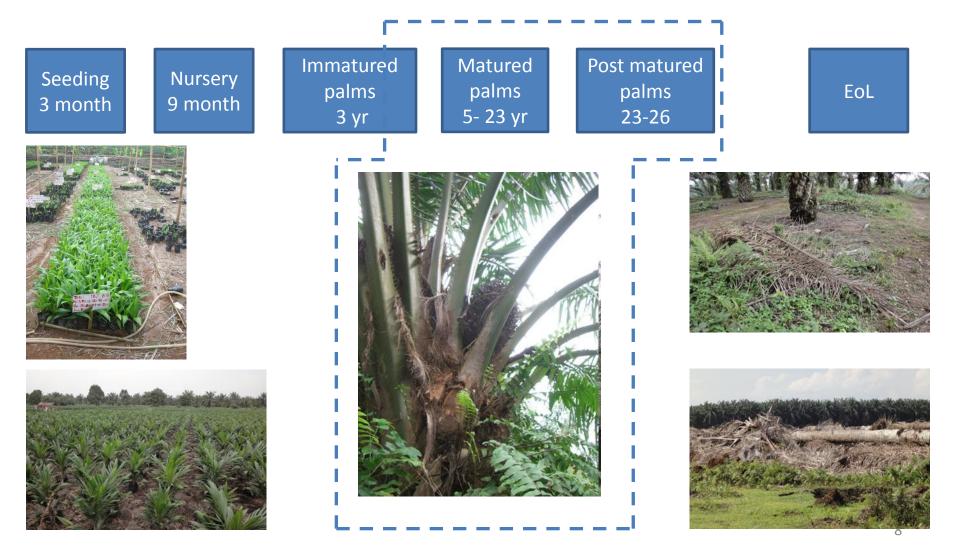
EU-RED (Annex V)

(6) **Emissions from** the extraction or cultivation of raw materials, shall include emissions from the extraction or **cultivation process itself**; from the collection of raw materials; from waste and leakages; and from the production of chemicals or products used in extraction or cultivation....


(11) **Emissions from** processing e.g. shall include emissions from the processing itself; from **waste and leakages**; and from the production of chemicals or products used in processing.

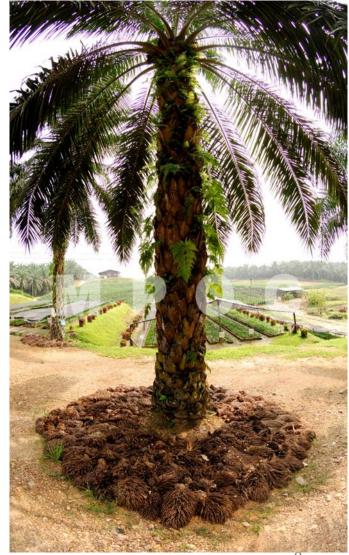
(17) Where a fuel production process produces, in combination, the fuel for which emissions are being calculated and one or more other products (co-products), greenhouse gas emissions shall be divided between the fuel or its intermediate product and the co-products in proportion to their energy content (determined by lower heating value in the case of co-products other than electricity).

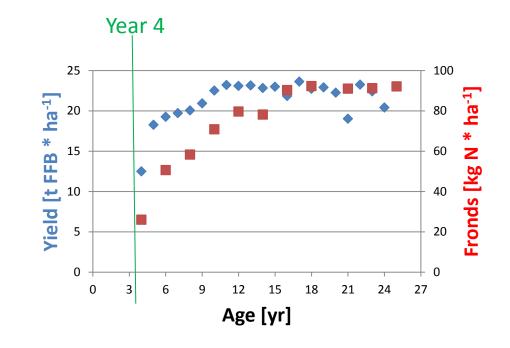
(18) (third paragraph)


Wastes, agricultural crop residues, including straw, bagasse, husks, cobs and **nut shells**, and residues from processing, including crude glycerine (glycerine that is not refined), **shall be considered to have zero life-cycle greenhouse gas emissions** up to the process of collection of those materials.

PO-biodiesel - simplified

Life cycle of oil palms – system boundary?


EFB-Management



Fronds

Measured: N-content in fronds Assumed: 24 pruned fronds per palm 132 palms per ha

Nitrous oxide emissions

IPCC, 2006,			TABLE 11.1 DEFAULT EMISSION FACTORS TO ESTIMATE DIRECT N2O EMISSIONS FROM MANAGED SOILS						
		Emission fa	Emission factor			Default value	Ī	Uncertainty range	
II C	amendment	EF1 for N additions from mineral fertilisers, organic amendments and crop residues, and N mineralised from mineral soil as a result of loss of soil carbon [kg N2O–N (kg N) ⁻¹]			0.01		0.003 - 0.03		
		Mineral N- fertiliser		EFB		N-recycling fronds		N- irrigation POME	
Input	[kg N*ha ⁻¹]	127		13		75 (100)		10	
JRC	[kg N*ha ⁻¹]	127		0.4		0		0	

JRC approx. 127.5 kg N * ha⁻¹ ; but with N_{org} it would be 225 kg N * ha⁻¹

	[kg N * ha⁻¹]	[kg N ₂ O*ha ⁻¹]	[kg CO _{2eq} *ha ⁻¹]
JRC	127.5	2.7	809
incl. N _{org}	225.0	4.8	1,427

Fugitive methane loss

- JRC open ponds: 1,222 kg CO_{2eq}/t CPO covered ponds: 0
- IPCC 2006, Vol. 5, Anaerobic digestion
 0 10% losses
- FNR. (2009) Biogas-Messprogramm II. best practise 1.25%, poor practise 9% losses (measured data Germany)
- Flesch et al. Biomass and Bioenergy, 2011 average fugitive emission rate 3% (modern biodigester in Canada)
- Small CDM Projects: manure biogas systems <u>5-10% losses</u>
- US-EPA on off-set methodology 5-10% losses (covered lagoons)

Co-product or waste

CPO: Allocation factor: 0.83

CPO: Allocation factor: 0.75

CPO: (36 MJ/kg), 230 kg/t FFB

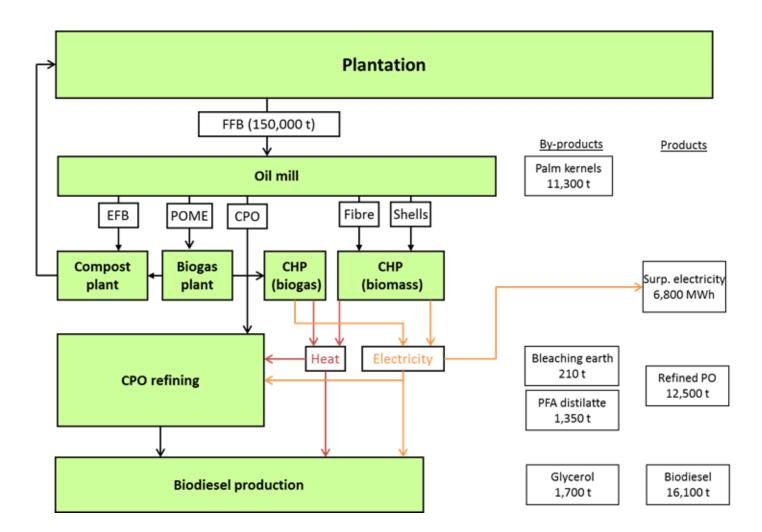
Shells: 18 MJ/kg (waste), 55 kg/t FFB

Kernels: 24-28 MJ/kg (co-product), 75 kg/t FFB

Nuts: 22 – 24 MJ/kg (co-product), 120 kg

Comparison of important **STRUMEN** values

	JRC/Biograce	Literature values	
Allocation factor (at oil mill)	0.95	0.75 - 0.83	
FFB yield (t FFB/(ha*a))	19	10 - 30	average 14
OER [%]	23.7	16.5 - 26	
EFB compost [kg N /ha]	6 - 8	12 -18	
Fronds [kg N/ha]	0	75 - 100	If equal to annual crops
			as perennial crop
Direct N ₂ O emissions due to organic	0.06	0.9 – 1.2	
N [kg N ₂ O-N/ha]			
Indirect N ₂ O-Emissions due to	0.024	0.38	
organic N [kg N ₂ O-N/ha]			
Field emissions due to organic N	25	379	
[kg CO _{2eg} / ha]			
Down-stream emissions from co-	0	296	
composting [kg CO _{2ea} /ha]			
Fugitive methane emissions [kg	0	4.7	
CO _{2eq} /t FFB]			


Conclusions

- Strange assumptions e.g. CPKO, EFB, no fugitive emissions
- Faulty system boundary (?),
- Methodologically not sound (organic nitrogen)
- Overestimation of GHG savings
- Good management practices not encouraged
 Update of default values for palm oil is urgently needed!!
- Residue management is crucial for sustainable PO production
- Integrated system approach, e.g. heat demanding processes and simulteously use of by-products to add value

Outlook - Energy optimised system

Acknowledgement

- S. Rahutomo and Dr T. Herawan
 Indonesian Palm Oil Research Institute (IOPRI)
- Prof. F. Schuchardt TI
- IEA Task 42 for financial support

Questions?

Further information:

Stichnothe H, Schuchardt F, Rahutomo S (2014) European renewable energy directive: Critical analysis of important default values and methods for calculating greenhouse gas (GHG) emissions of palm oil biodiesel. The International Journal of Life Cycle Assessment:1-11. doi:10.1007/s11367-014-0738-x

Contact: Thuenen Institute of Agricultural Technology Bundesallee 50 38016 Braunschweig, Germany

Email: Heinz.Stichnothe@ti.bund.de