Greener Detergents – Gold-based Catalysts for the Production of Ether Carboxylic Acids

Ulf Prüße^{1*}, Katharina Heidkamp¹, Memet Aytemir¹, Klaus-Dieter Vorlop¹, Nicolle Schwarz²

- 1. Johann Heinrich von Thünen-Institut (vTI), Institute of Agricultural Technology and Biosystems Engineering, Bundesallee 50, 38116 Braunschweig/Germany,
- 2. Clariant Produkte (Deutschland) GmbH, 84504 Burgkirchen, Germany
- * corr. Author: EMail <u>ulf.pruesse@vti.bund.de</u>
 - Non-ionic surfactants such as fatty-alcohol ethoxylates constitute the second largest class of detergents. They can be oxidized to ether carboxylic acids which belong to the group of anionic surfactants.
 - Current production process: Williamson's ether synthesis with ecologically questionable chlorinated substrates, excess use of chloroacetic acid, incomplete conversion and by-products and corrosion through NaCl formation
 - Pt- & Pd-based catalysts show only moderate selectivity, low activity and insufficient stability due to over-oxidation and leaching
 - Au/TiO₂ shows better activity, high selectivity but shows still metal leaching (Heidkamp et al. Eur. J. Lipid Sci. Technol. 112 2010 51)
 - Here we show a new environmentally sound fundamental technology for the oxidation of fatty-alcohol ethoxylates to ether carboxylic acids via active, selective and stable ceria-supported gold-platinum catalysts

Catalyst optimisation

Variation of preparation conditions

- supports (Al₂O₃, TiO₂, AC, CeO₂, BaSO₄, Y₂O₃,...)
- preparation methods (IW, DP Urea/NaOH, wet imp.)
- metal loadings (0.05 2 wt.-%)
- Au:Pt ratios (100:0 0:100)

Optimised catalyst

- wet impregnation method
- CeO₂ as support
- 0.1% AuPt(90:10) metal loading

Reactors and reaction conditions

Batch (slurry STR)

Batch

- 1000 g charge size
- 5 20 % substrate
- 25 g catalyst
- pH 11 (titration)
- 80 °C
- $p(O_2)$: 8 bar
- 1000 rpm

Continuous-flow trickle-bed

Johann Heinrich

von Thünen-Institut

Reaction scheme

→ Oxidation of primary alcohol function of polyethyleneglycols (PEGs), alkyl-PEGs or fatty alkohol ethoxylates to corresponding ether carboxylic acids

R-
$$(O-CH_2-CH_2)_n-OH$$

ethoxylate

 cat/O_2
 $R-(O-CH_2-CH_2)_{n-1}-O-CH_2-COOH$

ether carboxylic acid

AuPt/CeO₂ for oxidation of various substrates

name R		n	Activitya	Selectivity
PEG M 350	methyl-	~7	495	> 99 %
PEG M 500	methyl-	~11	495	> 99 %
PEG M 1000	methyl-	~22	145	> 99 %
PEG S 2000	-OH	~45	210	> 99 %
Butyldiglykol	butyl-	2	220	> 99 %
Hexanol + 7 EO	hexyl-	7	375	> 99 %
Octanol + 7 EO	octyl-	7	145	> 99 %
Genapol LA 030	lauryl-	~3	12	> 99 %
Genapol LA 070	lauryl-	~7	260	> 99 %
Sapogenat T 080	tributylphenyl-	~6	2	> 99 %

Varying activity but always excellent selectivity for a broad variety of substrates

Summary

- Optimized catalyst AuPt/CeO₂ opt. 130x as active as a Pt-catalyst from patent literature
- Excellent selectivity (> 99 %) of all gold-based catalysts
- Satisfactory long-term stability under continuous-flow conditions, no metal leaching if ceria is used as support
- Broad range of ether carboxylic acids accessible by this route

Long-term stability studies (trickle-bed)

→ Oxidation of PEG M 1000 @ $c_0 = 5$ wt%, T = 100°C, p = 18 bar, residence time = 18 min, pH = 13, variations see diagram

- → Good long-term stability @ varying conditions for 57 days
- → Selectivity for PEG M 1000 oxidation > 99 %
- → TEM analysis → no sintering of metal particles
- → ICP-OES analysis → no significant metal leaching detected

Catalyst comparison

Parameter	Pt- & Pd- based cats ^a	Au/TiO ₂	AuPt/TiO ₂	AuPt/CeO ₂	AuPt/CeO ₂ opt.
Selectivity	85 – 95 %	> 99 %	> 99 %	> 99 %	> 99 %
Activity ^b	< 2	10 ^c	40°	60°	260 ^c
Me-leaching	significant	small	reduced	no	no

- a from patent literature for comparable fatty alcohol ethoxylates and reaction conditions
- b in mmol min⁻¹ g_{Me}⁻¹ under optimized reaction conditions for Genapol LA070