Silke Boldt / N.N.
Institute of Biodiversity

Bundesallee 65
38116 Braunschweig
Phone: +49 531 596 2502
Phone: +49 531 596 2503
Fax: +49 531 596 2599

Soil fauna diversity in agroecosystems


Diversity of collembolan species extracted from a soil sample (c) Thünen-Institut/Christine van Capelle
Diversity of collembolan species extracted from a soil sample (© Thünen-Institut/Christine van Capelle)

Monitoring and assessment of soil fauna diversity in agroecosystems

Agricultural management like soil tillage, cropping sequence, plant pest management, fertilisation etc. controls biodiversity in agroecosystems. Presence and abundance of different species of soil fauna affect soil functions considerably.

Background and Objective

Keystone species of the microfauna (e.g. nematodes), mesofauna (e.g. enchytraeids, collembolans) and the macrofauna (e.g. earthworms) are involved in many important soil processes. The identification of keystone species in soil and assessment of their interactions in soil under the specific conditions of agricultural management are priority objectives of research to gain scientific knowledge for maintaining our resources of agricultural production.

Our aims are

(i) to identify and to assess soil fauna diversity in agroecosystems;

(ii) to find solutions for the protection and promotion of soil fauna diversity in agroecosystems.

Target Group

We disseminate our scientific output to the science community, to farmers and advisors as well as policy makers and the wider public.


Based on standardised methods according to ISO guidelines, we take sample in agricultural fields under varying management schemes at experimental sites and farms to monitor and assess the diversity of earthworms, collembolans and nematodes in different soils.

Preliminary Results

Our results on the diversity of soil fauna are published in various journals, book chapters and brochures covering the following subjects: soil tillage, soil compaction, effect of greenhouse gases, organic farming.



Permanent task 8.2003 - 12.2028

More Information

Projekt type:
Project status: ongoing


hits: 16

  1. Ludwig M, Wilmes P, Schrader S (2018) Measuring soil sustainability via soil resilience. Sci Total Environ 626:1484-1493, DOI:10.1016/j.scitotenv.2017.10.043
    pdf document (limited accessibility) 1762 kb
  2. Schorpp Q, Schrader S (2017) Dynamic of nematode communities in energy plant cropping systems. Eur J Soil Biol 78(1):92-101, DOI:10.1016/j.ejsobi.2016.12.002
  3. Schorpp Q, Müller AL, Schrader S, Dauber J (2016) Agrarökologisches Potential der Durchwachsenen Silphie (Silphium perfoliatum L.) aus Sicht biologischer Vielfalt. J Kulturpfl 68(12):412-422, DOI:10.1399/jfk.2016.12.12
  4. Schrader S (2016) Bodeninvertebraten sind entscheidende ökologische Leistungsträger. Agrobiodiversität 39:67-80
  5. Schorpp Q, Schrader S (2016) Earthworm functional groups respond to the perennial energy cropping system of the cup plant (Silphium perfoliatum L.). Biomass Bioenergy 87:61-68, DOI:10.1016/j.biombioe.2016.02.009
  6. Moos JH, Schrader S, Paulsen HM, Rahmann G (2016) Occasional reduced tillage in organic farming can promote earthworm performance and resource efficiency. Appl Soil Ecol 103:22-30, DOI:10.1016/j.apsoil.2016.01.017
  7. Hüttl RF, Russell DJ, Sticht C, Schrader S, Weigel H-J, Bens O, Lorenz K, Schneider B, Schneider BU (2012) Auswirkungen auf Bodenökosysteme. In: Mosbrugger V, Brasseur GP, Schaller M, Stribnry B (eds) Klimawandel und Biodiversität : Folgen für Deutschland. Darmstadt: Wiss Buchges, pp 128-163
  8. Capelle C van, Schrader S, Brunotte J (2012) Bodenbearbeitung steuert phytopathogene Bodenorganismen und ihre Antagonisten. Bodenschutz 4(12):120-126
  9. Capelle C van, Schrader S, Brunotte J (2012) Tillage-induced changes in the functional diversity of soil biota - a review with a focus on German data. Eur J Soil Biol 50:165-181, DOI:10.1016/j.ejsobi.2012.02.005
  10. Beylich A, Oberholzer H-R, Schrader S, Höper H, Wilke BM (2010) Evaluation of soil compaction effects on soil biota and soil biological processes in soils. Soil Tillage Res 109(2):133-143, DOI:10.1016/j.still.2010.05.010
  11. Schrader S, Bender J, Weigel H-J (2009) Ozone exposure of field-grown winter wheat affects soil mesofauna in the rhizosphere. Environ Pollut 157(12):3357-3362, DOI:10.1016/j.envpol.2009.06.031
  12. Sticht C, Schrader S, Giesemann A, Weigel H-J (2009) Sensitivity of nematode feeding types in arable soil to free air CO2 enrichment (FACE) is crop specific. Pedobiologia 52(5):337-349, DOI:10.1016/j.pedobi.2008.12.001
  13. Sticht C, Schrader S, Giesemann A, Weigel H-J (2008) Atmospheric CO2 enrichment induces life strategy- and species-specific responses of collembolans in the rhizosphere of sugar beet and winter wheat. Soil Biol Biochem 40(6):1432-1445, DOI:10.1016/j.soilbio.2007.12.022
  14. Schrader S, Anderson T-H, Tebbe C, Weigel H-J (2007) Monitoring von biologischer Vielfalt in Böden : Notwendigkeit, Ansätze und Fallbeispiele. Agrobiodiversität 27:196-213
  15. Schrader S, Kiehne J, Anderson T-H, Paulsen HM, Rahmann G (2006) Development of Collembolans after conversion towards organic farming. Asp Appl Biol 79:181-185
  16. Sticht C, Schrader S, Giesemann A, Weigel H-J (2006) Effects of elevated atmospheric CO2 and N fertilization on abundance, diversity and C-isotopic signature of collembolan communities in arable soil. Appl Soil Ecol 34(2-3):219-229, DOI:10.1016/j.apsoil.2006.01.007