Steffanie Schirren
Institute of Climate-Smart Agriculture
Bundesallee 65
38116 Braunschweig
Phone: +49 531 596 2602
Fax: +49 531 596 2699
ak@thuenen.de
A novel approach to investigate effects of atmospheric nitrogen deposition on ecosystem productivity and greenhouse gas exchange
The project NITROSPHERE investigates the relationship between atmospheric nitrogen deposition and greenhouse gas exchange of different ecosystems using novel measurement techniques (TRANC).
Despite comprehensive investigations in the field of C and N cycling, there is still little knowledge about direct implications of alterations in N deposition on ecosystem productivity and GHG exchange, which can at least partly be attributed to the lack of comprehensive reactive N measurements with high temporal resolution. Thus, the junior research group NITROSPHERE will contribute to ecosystem-atmosphere research by
Outcomes of the project are also expected to (i) further develop research infrastructures such as ICOS through instrumental and analytical improvements, (ii) increase the potential of global data assimilation networks such as FLUXNET, (iii) providing a better data basis for (re-)formulating Nr emission factors and climate protection regulations, and (iv) enhance the understanding of C and N cycling in both natural and managed ecosystems.
The group NITROSPHERE will consist of 3 researchers, i.e. two PhD students beside the group leader, and a technician to support all field- and lab-related work. The two PhD students will be assigned to one working package (WP) each and will mainly be responsible for the subtasks and milestones within the respective WP. The focus of WP I lies on Nr measurements and methodology improvement of the recently developed TRANC system. Measurements at peatland, agricultural, and forest sites are planned. WP II deals with data synthesis and Nr modeling to elaborate the relationship between Nr and GHG exchange. All subtasks of the project are expected to be finalized within the first 4 years; a fifth year is intended for further result application such as a regionalization of the obtained relationships.
Our results show that with the newly developed measurement technology the absorption capacity of peatland ecosystems for atmospheric nitrogen can be considerably lower than previously assumed (approx. 35% lower than with conventional methods). For the first time, TRANC and NH3-QCL could were coupled and measured simultaneously as part of NITROSPHERE. QCL and a further developed thermal converter showed good agreement in the measured NH3 concentrations during a comparison campaign. Emission factors of 3.6% could be measured a few days after fertilization on a corn field. This value is well below the 8.2% given by the European Environment Agency (2016). Global radiation and atmospheric concentration play an important role in explaining N-fluxes. For example, 41% of the variability in the exchange behavior of reactive nitrogen could be explained by both drivers. An analysis of the high-frequency losses of ΣNr and NH3 showed that established methods, which are optimized for CO2 and H2O, do not appear to be suitable for reactive gases and, according to the current state of the art, empirical methods should be used to estimate the attenuation.
In the area of modeling, significant progress has been made at various levels of the NH3 exchange determination: In Schrader & Brümmer (2013, 2014), a current review of the literature on NH3 deposition rates was presented. The core results confirm the basic assumption that deposition is particularly high in ecosystems with a high receptor surface (e.g. coniferous forests), whereas there is a high variability in the deposition rate, especially in actively managed ecosystems (e.g. arable land). On the one hand, these updated figures can be used directly for plausibility control and for the conservative estimation of NH3 dry deposition. On the other hand, they also underline the need for local and process-based modeling and the inadequate resolution of constant factors for scientific applications. Schrader et al. (2016) show gaps in knowledge and physically implausible processes in the modeling of the non-stomatal NH3 exchange that are currently being actively worked on. Schrader et al. (submitted) discuss and demonstrate a procedure for the more physiologically correct calculation of the stomatal exchange of NH3 based on the photosynthetic activity of the vegetation. This approach allows mechanistically correct, location-based parameterization of NH3 exchange models and is an important step in the modular structure of NH3 deposition monitoring on existing infrastructures. It also opens up the possibility of a better estimate of the NH3 deposition under future climatic conditions. With the help of the correction method by Schrader et al. (2018) it is possible to calculate valid NH3 deposition rates even with slow-response, low-cost sensors. In the past, significant systematic errors were often ignored and never quantified precisely and rigorously reproduced.
8.2013 - 7.2019
Projekt type:
Project funding number: 01LN1308A
Project status:
finished
hits: 14